Cargando…

Additive Manufacturing of Ti-48Al-2Cr-2Nb Alloy Using Gas Atomized and Mechanically Alloyed Plasma Spheroidized Powders

In this paper, laser powder-bed fusion (L-PBF) additive manufacturing (AM) with a high-temperature inductive platform preheating was used to fabricate intermetallic TiAl-alloy samples. The gas atomized (GA) and mechanically alloyed plasma spheroidized (MAPS) powders of the Ti-48Al-2Cr-2Nb (at. %) al...

Descripción completa

Detalles Bibliográficos
Autores principales: Polozov, Igor, Kantyukov, Artem, Goncharov, Ivan, Razumov, Nikolay, Silin, Alexey, Popovich, Vera, Zhu, Jia-Ning, Popovich, Anatoly
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560148/
https://www.ncbi.nlm.nih.gov/pubmed/32906691
http://dx.doi.org/10.3390/ma13183952
Descripción
Sumario:In this paper, laser powder-bed fusion (L-PBF) additive manufacturing (AM) with a high-temperature inductive platform preheating was used to fabricate intermetallic TiAl-alloy samples. The gas atomized (GA) and mechanically alloyed plasma spheroidized (MAPS) powders of the Ti-48Al-2Cr-2Nb (at. %) alloy were used as the feedstock material. The effects of L-PBF process parameters—platform preheating temperature—on the relative density, microstructure, phase composition, and mechanical properties of printed material were evaluated. Crack-free intermetallic samples with a high relative density of 99.9% were fabricated using 900 °C preheating temperature. Scanning electron microscopy and X-Ray diffraction analyses revealed a very fine microstructure consisting of lamellar α(2)/γ colonies, equiaxed γ grains, and retained β phase. Compressive tests showed superior properties of AM material as compared to the conventional TiAl-alloy. However, increased oxygen content was detected in MAPS powder compared to GA powder (~1.1 wt. % and ~0.1 wt. %, respectively), which resulted in lower compressive strength and strain, but higher microhardness compared to the samples produced from GA powder.