Cargando…
AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering
Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP‐3‐coated vesicles involved in Golg...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560216/ https://www.ncbi.nlm.nih.gov/pubmed/32840906 http://dx.doi.org/10.15252/embj.2020105117 |
_version_ | 1783595036276948992 |
---|---|
author | Schoppe, Jannis Mari, Muriel Yavavli, Erdal Auffarth, Kathrin Cabrera, Margarita Walter, Stefan Fröhlich, Florian Ungermann, Christian |
author_facet | Schoppe, Jannis Mari, Muriel Yavavli, Erdal Auffarth, Kathrin Cabrera, Margarita Walter, Stefan Fröhlich, Florian Ungermann, Christian |
author_sort | Schoppe, Jannis |
collection | PubMed |
description | Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP‐3‐coated vesicles involved in Golgi‐to‐vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP‐3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP‐3 recruitment, we now show that Vps41 can tether AP‐3 vesicles to mitochondria, yet AP‐3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase‐activating protein (GAP) Age2 at the AP‐3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP‐3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole. |
format | Online Article Text |
id | pubmed-7560216 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75602162020-10-19 AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering Schoppe, Jannis Mari, Muriel Yavavli, Erdal Auffarth, Kathrin Cabrera, Margarita Walter, Stefan Fröhlich, Florian Ungermann, Christian EMBO J Articles Heterotetrameric adapter (AP) complexes cooperate with the small GTPase Arf1 or lipids in cargo selection, vesicle formation, and budding at endomembranes in eukaryotic cells. While most AP complexes also require clathrin as the outer vesicle shell, formation of AP‐3‐coated vesicles involved in Golgi‐to‐vacuole transport in yeast has been postulated to depend on Vps41, a subunit of the vacuolar HOPS tethering complex. HOPS has also been identified as the tether of AP‐3 vesicles on vacuoles. To unravel this conundrum of a dual Vps41 function, we anchored Vps41 stably to the mitochondrial outer membrane. By monitoring AP‐3 recruitment, we now show that Vps41 can tether AP‐3 vesicles to mitochondria, yet AP‐3 vesicles can form in the absence of Vps41 or clathrin. By proximity labeling and mass spectrometry, we identify the Arf1 GTPase‐activating protein (GAP) Age2 at the AP‐3 coat and show that tethering, but not fusion at the vacuole can occur without complete uncoating. We conclude that AP‐3 vesicles retain their coat after budding and that their complete uncoating occurs only after tethering at the vacuole. John Wiley and Sons Inc. 2020-08-25 2020-10-15 /pmc/articles/PMC7560216/ /pubmed/32840906 http://dx.doi.org/10.15252/embj.2020105117 Text en © 2020 The Authors. Published under the terms of the CC BY 4.0 license This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Articles Schoppe, Jannis Mari, Muriel Yavavli, Erdal Auffarth, Kathrin Cabrera, Margarita Walter, Stefan Fröhlich, Florian Ungermann, Christian AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering |
title | AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering |
title_full | AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering |
title_fullStr | AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering |
title_full_unstemmed | AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering |
title_short | AP‐3 vesicle uncoating occurs after HOPS‐dependent vacuole tethering |
title_sort | ap‐3 vesicle uncoating occurs after hops‐dependent vacuole tethering |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560216/ https://www.ncbi.nlm.nih.gov/pubmed/32840906 http://dx.doi.org/10.15252/embj.2020105117 |
work_keys_str_mv | AT schoppejannis ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT marimuriel ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT yavavlierdal ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT auffarthkathrin ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT cabreramargarita ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT walterstefan ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT frohlichflorian ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering AT ungermannchristian ap3vesicleuncoatingoccursafterhopsdependentvacuoletethering |