Cargando…
Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications
A well-defined resin system is needed to serve as a benchmark for 3D printing of high-performance composites. This work describes the design and characterization of such a system that takes into account processability and performance considerations. The Grunberg–Nissan model for resin viscosity and...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560343/ https://www.ncbi.nlm.nih.gov/pubmed/32947908 http://dx.doi.org/10.3390/ma13184109 |
_version_ | 1783595065572065280 |
---|---|
author | Tu, Jianwei Makarian, Kamran Alvarez, Nicolas J. Palmese, Giuseppe R. |
author_facet | Tu, Jianwei Makarian, Kamran Alvarez, Nicolas J. Palmese, Giuseppe R. |
author_sort | Tu, Jianwei |
collection | PubMed |
description | A well-defined resin system is needed to serve as a benchmark for 3D printing of high-performance composites. This work describes the design and characterization of such a system that takes into account processability and performance considerations. The Grunberg–Nissan model for resin viscosity and the Fox equation for polymer T(g) were used to determine proper monomer ratios. The target viscosity of the resin was below 500 cP, and the target final T(g) of the cured polymer was 150 °C based on tan-δ peak from dynamic mechanical analysis. A tri-component model resin system, termed DA-2 resin, was determined and fully characterized. The printed polymer exhibited good thermal properties and high mechanical strength after post-cure, but has a comparatively low fracture toughness. The model resin will be used in additive manufacturing of fiber reinforced composite materials as well as for understanding the fundamental processing–property relationships in light-based 3D printing. |
format | Online Article Text |
id | pubmed-7560343 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75603432020-10-22 Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications Tu, Jianwei Makarian, Kamran Alvarez, Nicolas J. Palmese, Giuseppe R. Materials (Basel) Article A well-defined resin system is needed to serve as a benchmark for 3D printing of high-performance composites. This work describes the design and characterization of such a system that takes into account processability and performance considerations. The Grunberg–Nissan model for resin viscosity and the Fox equation for polymer T(g) were used to determine proper monomer ratios. The target viscosity of the resin was below 500 cP, and the target final T(g) of the cured polymer was 150 °C based on tan-δ peak from dynamic mechanical analysis. A tri-component model resin system, termed DA-2 resin, was determined and fully characterized. The printed polymer exhibited good thermal properties and high mechanical strength after post-cure, but has a comparatively low fracture toughness. The model resin will be used in additive manufacturing of fiber reinforced composite materials as well as for understanding the fundamental processing–property relationships in light-based 3D printing. MDPI 2020-09-16 /pmc/articles/PMC7560343/ /pubmed/32947908 http://dx.doi.org/10.3390/ma13184109 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Tu, Jianwei Makarian, Kamran Alvarez, Nicolas J. Palmese, Giuseppe R. Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications |
title | Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications |
title_full | Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications |
title_fullStr | Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications |
title_full_unstemmed | Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications |
title_short | Formulation of a Model Resin System for Benchmarking Processing-Property Relationships in High-Performance Photo 3D Printing Applications |
title_sort | formulation of a model resin system for benchmarking processing-property relationships in high-performance photo 3d printing applications |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560343/ https://www.ncbi.nlm.nih.gov/pubmed/32947908 http://dx.doi.org/10.3390/ma13184109 |
work_keys_str_mv | AT tujianwei formulationofamodelresinsystemforbenchmarkingprocessingpropertyrelationshipsinhighperformancephoto3dprintingapplications AT makariankamran formulationofamodelresinsystemforbenchmarkingprocessingpropertyrelationshipsinhighperformancephoto3dprintingapplications AT alvareznicolasj formulationofamodelresinsystemforbenchmarkingprocessingpropertyrelationshipsinhighperformancephoto3dprintingapplications AT palmesegiusepper formulationofamodelresinsystemforbenchmarkingprocessingpropertyrelationshipsinhighperformancephoto3dprintingapplications |