Cargando…
Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability
The large-scale preparation of stable graphene aqueous dispersion has been a challenge in the theoretical research and industrial applications of graphene. This study determined the suitable exfoliation agent for overcoming the van der Waals force between the layers of expanded graphite sheets using...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560394/ https://www.ncbi.nlm.nih.gov/pubmed/32937744 http://dx.doi.org/10.3390/ma13184069 |
_version_ | 1783595077408391168 |
---|---|
author | Li, Liangchuan Zhou, Ming Jin, Long Mo, Youtang Xu, Enyong Chen, Huajin Liu, Lincong Wang, Mingyue Chen, Xin Zhu, Hongwei |
author_facet | Li, Liangchuan Zhou, Ming Jin, Long Mo, Youtang Xu, Enyong Chen, Huajin Liu, Lincong Wang, Mingyue Chen, Xin Zhu, Hongwei |
author_sort | Li, Liangchuan |
collection | PubMed |
description | The large-scale preparation of stable graphene aqueous dispersion has been a challenge in the theoretical research and industrial applications of graphene. This study determined the suitable exfoliation agent for overcoming the van der Waals force between the layers of expanded graphite sheets using the liquid-phase exfoliation method on the basis of surface energy theory to prepare a single layer of graphene. To evenly and stably disperse graphene in pure water, the dispersants were selected based on Hansen solubility parameters, namely, hydrophilicity, heterocyclic structure and easy combinative features. The graphene exfoliation grade and the dispersion stability, number of layers and defect density in the dispersion were analysed under Tyndall phenomenon using volume sedimentation method, zeta potential analysis, scanning electron microscopy, Raman spectroscopy and atomic force microscopy characterization. Subsequently, the long-chain quaternary ammonium salt cationic surfactant octadecyltrimethylammonium chloride (0.3 wt.%) was electrolyzed in pure water to form ammonium ions, which promoted hydrogen bonding in the remaining oxygen-containing groups on the surface of the stripped graphene. Forming the electrostatic steric hindrance effect to achieve the stable dispersion of graphene in water can exfoliate a minimum of eight layers of graphene nanosheets; the average number of layers was less than 14. The 0.1 wt.% (sodium dodecylbenzene sulfonate: melamine = 1:1) mixed system forms π–π interaction and hydrogen bonding with graphene in pure water, which allow the stable dispersion of graphene for 22 days without sedimentation. The findings can be beneficial for the large-scale preparation of waterborne graphene in industrial applications. |
format | Online Article Text |
id | pubmed-7560394 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75603942020-10-22 Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability Li, Liangchuan Zhou, Ming Jin, Long Mo, Youtang Xu, Enyong Chen, Huajin Liu, Lincong Wang, Mingyue Chen, Xin Zhu, Hongwei Materials (Basel) Article The large-scale preparation of stable graphene aqueous dispersion has been a challenge in the theoretical research and industrial applications of graphene. This study determined the suitable exfoliation agent for overcoming the van der Waals force between the layers of expanded graphite sheets using the liquid-phase exfoliation method on the basis of surface energy theory to prepare a single layer of graphene. To evenly and stably disperse graphene in pure water, the dispersants were selected based on Hansen solubility parameters, namely, hydrophilicity, heterocyclic structure and easy combinative features. The graphene exfoliation grade and the dispersion stability, number of layers and defect density in the dispersion were analysed under Tyndall phenomenon using volume sedimentation method, zeta potential analysis, scanning electron microscopy, Raman spectroscopy and atomic force microscopy characterization. Subsequently, the long-chain quaternary ammonium salt cationic surfactant octadecyltrimethylammonium chloride (0.3 wt.%) was electrolyzed in pure water to form ammonium ions, which promoted hydrogen bonding in the remaining oxygen-containing groups on the surface of the stripped graphene. Forming the electrostatic steric hindrance effect to achieve the stable dispersion of graphene in water can exfoliate a minimum of eight layers of graphene nanosheets; the average number of layers was less than 14. The 0.1 wt.% (sodium dodecylbenzene sulfonate: melamine = 1:1) mixed system forms π–π interaction and hydrogen bonding with graphene in pure water, which allow the stable dispersion of graphene for 22 days without sedimentation. The findings can be beneficial for the large-scale preparation of waterborne graphene in industrial applications. MDPI 2020-09-14 /pmc/articles/PMC7560394/ /pubmed/32937744 http://dx.doi.org/10.3390/ma13184069 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Liangchuan Zhou, Ming Jin, Long Mo, Youtang Xu, Enyong Chen, Huajin Liu, Lincong Wang, Mingyue Chen, Xin Zhu, Hongwei Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability |
title | Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability |
title_full | Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability |
title_fullStr | Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability |
title_full_unstemmed | Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability |
title_short | Green Preparation of Aqueous Graphene Dispersion and Study on Its Dispersion Stability |
title_sort | green preparation of aqueous graphene dispersion and study on its dispersion stability |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560394/ https://www.ncbi.nlm.nih.gov/pubmed/32937744 http://dx.doi.org/10.3390/ma13184069 |
work_keys_str_mv | AT liliangchuan greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT zhouming greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT jinlong greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT moyoutang greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT xuenyong greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT chenhuajin greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT liulincong greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT wangmingyue greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT chenxin greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability AT zhuhongwei greenpreparationofaqueousgraphenedispersionandstudyonitsdispersionstability |