Cargando…
Preparation of 1, 3, 6, 8-Pyrenesulfonic Acid Tetrasodium Salt Dye-Doped Silica Nanoparticles and Their Application in Water-Based Anti-Counterfeit Ink
In order to improve the luminescent stability of water-based anti-counterfeit ink, a new fluorescent material is prepared by doping dye into silica nanoparticles. Water soluble anionic dye 1, 3, 6, 8-pyrenesulfonic acid sodium salt (PTSA) is selected as the dopant. In this work, PTSA is successfully...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560414/ https://www.ncbi.nlm.nih.gov/pubmed/32937831 http://dx.doi.org/10.3390/ma13184074 |
Sumario: | In order to improve the luminescent stability of water-based anti-counterfeit ink, a new fluorescent material is prepared by doping dye into silica nanoparticles. Water soluble anionic dye 1, 3, 6, 8-pyrenesulfonic acid sodium salt (PTSA) is selected as the dopant. In this work, PTSA is successfully trapped into silica nanoparticles (SiNPs) by the reverse microemulsion method using cationic polyelectrolyte poly (dimethyl diallyl ammonium chloride; PDADMAC) as a bridge. The UV absorption spectra, fluorescence emission spectra and fluorescent decay curves are used to describe the luminescent properties of the PTSA-doped silica nanoparticles (PTSA-SiNPs). In addition, the as-prepared PTSA-SiNPs and polyurethane waterborne emulsion are used to prepare water-based anti-counterfeit ink, and fluorescent patterns are successfully printed through screen-printing. The samples printed by the ink exhibit desirable fluorescence properties, heat stability, robust photostability, and a fluorescent anti-counterfeit effect, which makes the PTSA-SiNPs promising luminescent materials for anti-counterfeit applications. |
---|