Cargando…
Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy
There is an increased interest in high entropy alloys as a result of the special possibilities of improving the mechanical, physical or chemical characteristics resulting from metallic matrices made of different chemical elements added in equimolar proportions. The next step in developing new alloys...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560482/ https://www.ncbi.nlm.nih.gov/pubmed/32962284 http://dx.doi.org/10.3390/ma13184181 |
_version_ | 1783595097843040256 |
---|---|
author | Constantin, George Balan, Emilia Voiculescu, Ionelia Geanta, Victor Craciun, Valentin |
author_facet | Constantin, George Balan, Emilia Voiculescu, Ionelia Geanta, Victor Craciun, Valentin |
author_sort | Constantin, George |
collection | PubMed |
description | There is an increased interest in high entropy alloys as a result of the special possibilities of improving the mechanical, physical or chemical characteristics resulting from metallic matrices made of different chemical elements added in equimolar proportions. The next step in developing new alloys is to determine the cutting conditions to optimize manufacturing prescriptions. This article presents a series of tests performed to estimate the machining behavior of the Al(0.6)CoCrFeNi high entropy alloy. The effects of temperature during machining, wear effects on the cutting tool, evolution of the hardness on the processed areas, cutting force components and resultant cutting force for high entropy alloy (HEA) in comparison with 304 stainless steel, scrap aspect and machined surface quality were analyzed to have an image of the HEA machinability. In terms of cutting forces, the behavior of the HEA was found to be about 59% better than that of stainless steel. XRD analysis demonstrated that the patterns are very similar for as-cast and machined surfaces. The wear effects that appear on the cutting edge faces for the tool made of rapid steel compared to carbide during HEA machining led to the conclusion that physical vapor deposition (PVD)-coated carbide inserts are suitable for the cutting of HEAs. |
format | Online Article Text |
id | pubmed-7560482 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75604822020-10-22 Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy Constantin, George Balan, Emilia Voiculescu, Ionelia Geanta, Victor Craciun, Valentin Materials (Basel) Article There is an increased interest in high entropy alloys as a result of the special possibilities of improving the mechanical, physical or chemical characteristics resulting from metallic matrices made of different chemical elements added in equimolar proportions. The next step in developing new alloys is to determine the cutting conditions to optimize manufacturing prescriptions. This article presents a series of tests performed to estimate the machining behavior of the Al(0.6)CoCrFeNi high entropy alloy. The effects of temperature during machining, wear effects on the cutting tool, evolution of the hardness on the processed areas, cutting force components and resultant cutting force for high entropy alloy (HEA) in comparison with 304 stainless steel, scrap aspect and machined surface quality were analyzed to have an image of the HEA machinability. In terms of cutting forces, the behavior of the HEA was found to be about 59% better than that of stainless steel. XRD analysis demonstrated that the patterns are very similar for as-cast and machined surfaces. The wear effects that appear on the cutting edge faces for the tool made of rapid steel compared to carbide during HEA machining led to the conclusion that physical vapor deposition (PVD)-coated carbide inserts are suitable for the cutting of HEAs. MDPI 2020-09-20 /pmc/articles/PMC7560482/ /pubmed/32962284 http://dx.doi.org/10.3390/ma13184181 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Constantin, George Balan, Emilia Voiculescu, Ionelia Geanta, Victor Craciun, Valentin Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy |
title | Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy |
title_full | Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy |
title_fullStr | Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy |
title_full_unstemmed | Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy |
title_short | Cutting Behavior of Al(0.6)CoCrFeNi High Entropy Alloy |
title_sort | cutting behavior of al(0.6)cocrfeni high entropy alloy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560482/ https://www.ncbi.nlm.nih.gov/pubmed/32962284 http://dx.doi.org/10.3390/ma13184181 |
work_keys_str_mv | AT constantingeorge cuttingbehaviorofal06cocrfenihighentropyalloy AT balanemilia cuttingbehaviorofal06cocrfenihighentropyalloy AT voiculescuionelia cuttingbehaviorofal06cocrfenihighentropyalloy AT geantavictor cuttingbehaviorofal06cocrfenihighentropyalloy AT craciunvalentin cuttingbehaviorofal06cocrfenihighentropyalloy |