Cargando…

A strategy to incorporate prior knowledge into correlation network cutoff selection

Correlation networks are frequently used to statistically extract biological interactions between omics markers. Network edge selection is typically based on the statistical significance of the correlation coefficients. This procedure, however, is not guaranteed to capture biological mechanisms. We...

Descripción completa

Detalles Bibliográficos
Autores principales: Benedetti, Elisa, Pučić-Baković, Maja, Keser, Toma, Gerstner, Nathalie, Büyüközkan, Mustafa, Štambuk, Tamara, Selman, Maurice H. J., Rudan, Igor, Polašek, Ozren, Hayward, Caroline, Al-Amin, Hassen, Suhre, Karsten, Kastenmüller, Gabi, Lauc, Gordan, Krumsiek, Jan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560866/
https://www.ncbi.nlm.nih.gov/pubmed/33056991
http://dx.doi.org/10.1038/s41467-020-18675-3
_version_ 1783595168124895232
author Benedetti, Elisa
Pučić-Baković, Maja
Keser, Toma
Gerstner, Nathalie
Büyüközkan, Mustafa
Štambuk, Tamara
Selman, Maurice H. J.
Rudan, Igor
Polašek, Ozren
Hayward, Caroline
Al-Amin, Hassen
Suhre, Karsten
Kastenmüller, Gabi
Lauc, Gordan
Krumsiek, Jan
author_facet Benedetti, Elisa
Pučić-Baković, Maja
Keser, Toma
Gerstner, Nathalie
Büyüközkan, Mustafa
Štambuk, Tamara
Selman, Maurice H. J.
Rudan, Igor
Polašek, Ozren
Hayward, Caroline
Al-Amin, Hassen
Suhre, Karsten
Kastenmüller, Gabi
Lauc, Gordan
Krumsiek, Jan
author_sort Benedetti, Elisa
collection PubMed
description Correlation networks are frequently used to statistically extract biological interactions between omics markers. Network edge selection is typically based on the statistical significance of the correlation coefficients. This procedure, however, is not guaranteed to capture biological mechanisms. We here propose an alternative approach for network reconstruction: a cutoff selection algorithm that maximizes the overlap of the inferred network with available prior knowledge. We first evaluate the approach on IgG glycomics data, for which the biochemical pathway is known and well-characterized. Importantly, even in the case of incomplete or incorrect prior knowledge, the optimal network is close to the true optimum. We then demonstrate the generalizability of the approach with applications to untargeted metabolomics and transcriptomics data. For the transcriptomics case, we demonstrate that the optimized network is superior to statistical networks in systematically retrieving interactions that were not included in the biological reference used for optimization.
format Online
Article
Text
id pubmed-7560866
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75608662020-10-19 A strategy to incorporate prior knowledge into correlation network cutoff selection Benedetti, Elisa Pučić-Baković, Maja Keser, Toma Gerstner, Nathalie Büyüközkan, Mustafa Štambuk, Tamara Selman, Maurice H. J. Rudan, Igor Polašek, Ozren Hayward, Caroline Al-Amin, Hassen Suhre, Karsten Kastenmüller, Gabi Lauc, Gordan Krumsiek, Jan Nat Commun Article Correlation networks are frequently used to statistically extract biological interactions between omics markers. Network edge selection is typically based on the statistical significance of the correlation coefficients. This procedure, however, is not guaranteed to capture biological mechanisms. We here propose an alternative approach for network reconstruction: a cutoff selection algorithm that maximizes the overlap of the inferred network with available prior knowledge. We first evaluate the approach on IgG glycomics data, for which the biochemical pathway is known and well-characterized. Importantly, even in the case of incomplete or incorrect prior knowledge, the optimal network is close to the true optimum. We then demonstrate the generalizability of the approach with applications to untargeted metabolomics and transcriptomics data. For the transcriptomics case, we demonstrate that the optimized network is superior to statistical networks in systematically retrieving interactions that were not included in the biological reference used for optimization. Nature Publishing Group UK 2020-10-14 /pmc/articles/PMC7560866/ /pubmed/33056991 http://dx.doi.org/10.1038/s41467-020-18675-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Benedetti, Elisa
Pučić-Baković, Maja
Keser, Toma
Gerstner, Nathalie
Büyüközkan, Mustafa
Štambuk, Tamara
Selman, Maurice H. J.
Rudan, Igor
Polašek, Ozren
Hayward, Caroline
Al-Amin, Hassen
Suhre, Karsten
Kastenmüller, Gabi
Lauc, Gordan
Krumsiek, Jan
A strategy to incorporate prior knowledge into correlation network cutoff selection
title A strategy to incorporate prior knowledge into correlation network cutoff selection
title_full A strategy to incorporate prior knowledge into correlation network cutoff selection
title_fullStr A strategy to incorporate prior knowledge into correlation network cutoff selection
title_full_unstemmed A strategy to incorporate prior knowledge into correlation network cutoff selection
title_short A strategy to incorporate prior knowledge into correlation network cutoff selection
title_sort strategy to incorporate prior knowledge into correlation network cutoff selection
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560866/
https://www.ncbi.nlm.nih.gov/pubmed/33056991
http://dx.doi.org/10.1038/s41467-020-18675-3
work_keys_str_mv AT benedettielisa astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT pucicbakovicmaja astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT kesertoma astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT gerstnernathalie astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT buyukozkanmustafa astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT stambuktamara astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT selmanmauricehj astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT rudanigor astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT polasekozren astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT haywardcaroline astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT alaminhassen astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT suhrekarsten astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT kastenmullergabi astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT laucgordan astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT krumsiekjan astrategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT benedettielisa strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT pucicbakovicmaja strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT kesertoma strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT gerstnernathalie strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT buyukozkanmustafa strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT stambuktamara strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT selmanmauricehj strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT rudanigor strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT polasekozren strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT haywardcaroline strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT alaminhassen strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT suhrekarsten strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT kastenmullergabi strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT laucgordan strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection
AT krumsiekjan strategytoincorporatepriorknowledgeintocorrelationnetworkcutoffselection