Cargando…

Phenotype-dependent habitat choice is too weak to cause assortative mating between Drosophila melanogaster strains differing in light sensitivity

Matching habitat choice is gaining attention as a mechanism for maintaining biodiversity and driving speciation. It revolves around the idea that individuals select the habitat in which they perceive to obtain greater fitness based on a prior evaluation of their local performance across heterogeneou...

Descripción completa

Detalles Bibliográficos
Autores principales: Peralta-Rincón, Juan Ramón, Aoulad, Fatima Zohra, Prado, Antonio, Edelaar, Pim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561098/
https://www.ncbi.nlm.nih.gov/pubmed/33057335
http://dx.doi.org/10.1371/journal.pone.0234223
Descripción
Sumario:Matching habitat choice is gaining attention as a mechanism for maintaining biodiversity and driving speciation. It revolves around the idea that individuals select the habitat in which they perceive to obtain greater fitness based on a prior evaluation of their local performance across heterogeneous environments. This results in individuals with similar ecologically relevant traits converging to the same patches, and hence it could indirectly cause assortative mating when mating occurs in those patches. White-eyed mutants of Drosophila fruit flies have a series of disadvantages compared to wild type flies, including a poorer performance under bright light. It has been previously reported that, when given a choice, wild type Drosophila simulans preferred a brightly lit habitat while white-eyed mutants occupied a dimly lit one. This spatial segregation allowed the eye color polymorphism to be maintained for several generations, whereas normally it is quickly replaced by the wild type. Here we compare the habitat choice decisions of white-eyed and wild type flies in another species, D. melanogaster. We released groups of flies in a light gradient and recorded their departure and settlement behavior. Departure depended on sex and phenotype, but not on the light conditions of the release point. Settlement depended on sex, and on the interaction between phenotype and light conditions of the point of settlement. Nonetheless, simulations showed that this differential habitat use by the phenotypes would only cause a minimal degree of assortative mating in this species.