Cargando…

Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data

Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. D...

Descripción completa

Detalles Bibliográficos
Autores principales: Lydeamore, Michael J., Campbell, Patricia T., Price, David J., Wu, Yue, Marcato, Adrian J., Cuningham, Will, Carapetis, Jonathan R., Andrews, Ross M., McDonald, Malcolm I., McVernon, Jodie, Tong, Steven Y. C., McCaw, James M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561265/
https://www.ncbi.nlm.nih.gov/pubmed/33017395
http://dx.doi.org/10.1371/journal.pcbi.1007838
_version_ 1783595234411675648
author Lydeamore, Michael J.
Campbell, Patricia T.
Price, David J.
Wu, Yue
Marcato, Adrian J.
Cuningham, Will
Carapetis, Jonathan R.
Andrews, Ross M.
McDonald, Malcolm I.
McVernon, Jodie
Tong, Steven Y. C.
McCaw, James M.
author_facet Lydeamore, Michael J.
Campbell, Patricia T.
Price, David J.
Wu, Yue
Marcato, Adrian J.
Cuningham, Will
Carapetis, Jonathan R.
Andrews, Ross M.
McDonald, Malcolm I.
McVernon, Jodie
Tong, Steven Y. C.
McCaw, James M.
author_sort Lydeamore, Michael J.
collection PubMed
description Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio—all necessary for the construction of dynamic transmission models—have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores.
format Online
Article
Text
id pubmed-7561265
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-75612652020-10-21 Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data Lydeamore, Michael J. Campbell, Patricia T. Price, David J. Wu, Yue Marcato, Adrian J. Cuningham, Will Carapetis, Jonathan R. Andrews, Ross M. McDonald, Malcolm I. McVernon, Jodie Tong, Steven Y. C. McCaw, James M. PLoS Comput Biol Research Article Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio—all necessary for the construction of dynamic transmission models—have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores. Public Library of Science 2020-10-05 /pmc/articles/PMC7561265/ /pubmed/33017395 http://dx.doi.org/10.1371/journal.pcbi.1007838 Text en © 2020 Lydeamore et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Lydeamore, Michael J.
Campbell, Patricia T.
Price, David J.
Wu, Yue
Marcato, Adrian J.
Cuningham, Will
Carapetis, Jonathan R.
Andrews, Ross M.
McDonald, Malcolm I.
McVernon, Jodie
Tong, Steven Y. C.
McCaw, James M.
Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
title Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
title_full Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
title_fullStr Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
title_full_unstemmed Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
title_short Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
title_sort estimation of the force of infection and infectious period of skin sores in remote australian communities using interval-censored data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561265/
https://www.ncbi.nlm.nih.gov/pubmed/33017395
http://dx.doi.org/10.1371/journal.pcbi.1007838
work_keys_str_mv AT lydeamoremichaelj estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT campbellpatriciat estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT pricedavidj estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT wuyue estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT marcatoadrianj estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT cuninghamwill estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT carapetisjonathanr estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT andrewsrossm estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT mcdonaldmalcolmi estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT mcvernonjodie estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT tongstevenyc estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata
AT mccawjamesm estimationoftheforceofinfectionandinfectiousperiodofskinsoresinremoteaustraliancommunitiesusingintervalcensoreddata