Cargando…
FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair
Most organs and tissues in the body, including bone, can repair after an injury due to the activation of endogenous adult stem/progenitor cells to replace the damaged tissue. Inherent dysfunctions of the endogenous stem/progenitor cells in skeletal repair disorders are still poorly understood. Here,...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561512/ https://www.ncbi.nlm.nih.gov/pubmed/32916123 http://dx.doi.org/10.1016/j.stemcr.2020.08.005 |
_version_ | 1783595283282657280 |
---|---|
author | Julien, Anais Perrin, Simon Duchamp de Lageneste, Oriane Carvalho, Caroline Bensidhoum, Morad Legeai-Mallet, Laurence Colnot, Céline |
author_facet | Julien, Anais Perrin, Simon Duchamp de Lageneste, Oriane Carvalho, Caroline Bensidhoum, Morad Legeai-Mallet, Laurence Colnot, Céline |
author_sort | Julien, Anais |
collection | PubMed |
description | Most organs and tissues in the body, including bone, can repair after an injury due to the activation of endogenous adult stem/progenitor cells to replace the damaged tissue. Inherent dysfunctions of the endogenous stem/progenitor cells in skeletal repair disorders are still poorly understood. Here, we report that Fgfr3(Y637C/+) over-activating mutation in Prx1-derived skeletal stem/progenitor cells leads to failure of fracture consolidation. We show that periosteal cells (PCs) carrying the Fgfr3(Y637C/+) mutation can engage in osteogenic and chondrogenic lineages, but following transplantation do not undergo terminal chondrocyte hypertrophy and transformation into bone causing pseudarthrosis. Instead, Prx1(Cre);Fgfr3(Y637C/+) PCs give rise to fibrocartilage and fibrosis. Conversely, wild-type PCs transplanted at the fracture site of Prx1(Cre);Fgfr3(Y637C/+) mice allow hypertrophic cartilage transition to bone and permit fracture consolidation. The results thus highlight cartilage-to-bone transformation as a necessary step for bone repair and FGFR3 signaling within PCs as a key regulator of this transformation. |
format | Online Article Text |
id | pubmed-7561512 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-75615122020-10-20 FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair Julien, Anais Perrin, Simon Duchamp de Lageneste, Oriane Carvalho, Caroline Bensidhoum, Morad Legeai-Mallet, Laurence Colnot, Céline Stem Cell Reports Article Most organs and tissues in the body, including bone, can repair after an injury due to the activation of endogenous adult stem/progenitor cells to replace the damaged tissue. Inherent dysfunctions of the endogenous stem/progenitor cells in skeletal repair disorders are still poorly understood. Here, we report that Fgfr3(Y637C/+) over-activating mutation in Prx1-derived skeletal stem/progenitor cells leads to failure of fracture consolidation. We show that periosteal cells (PCs) carrying the Fgfr3(Y637C/+) mutation can engage in osteogenic and chondrogenic lineages, but following transplantation do not undergo terminal chondrocyte hypertrophy and transformation into bone causing pseudarthrosis. Instead, Prx1(Cre);Fgfr3(Y637C/+) PCs give rise to fibrocartilage and fibrosis. Conversely, wild-type PCs transplanted at the fracture site of Prx1(Cre);Fgfr3(Y637C/+) mice allow hypertrophic cartilage transition to bone and permit fracture consolidation. The results thus highlight cartilage-to-bone transformation as a necessary step for bone repair and FGFR3 signaling within PCs as a key regulator of this transformation. Elsevier 2020-09-10 /pmc/articles/PMC7561512/ /pubmed/32916123 http://dx.doi.org/10.1016/j.stemcr.2020.08.005 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Julien, Anais Perrin, Simon Duchamp de Lageneste, Oriane Carvalho, Caroline Bensidhoum, Morad Legeai-Mallet, Laurence Colnot, Céline FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair |
title | FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair |
title_full | FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair |
title_fullStr | FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair |
title_full_unstemmed | FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair |
title_short | FGFR3 in Periosteal Cells Drives Cartilage-to-Bone Transformation in Bone Repair |
title_sort | fgfr3 in periosteal cells drives cartilage-to-bone transformation in bone repair |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561512/ https://www.ncbi.nlm.nih.gov/pubmed/32916123 http://dx.doi.org/10.1016/j.stemcr.2020.08.005 |
work_keys_str_mv | AT julienanais fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair AT perrinsimon fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair AT duchampdelagenesteoriane fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair AT carvalhocaroline fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair AT bensidhoummorad fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair AT legeaimalletlaurence fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair AT colnotceline fgfr3inperiostealcellsdrivescartilagetobonetransformationinbonerepair |