Cargando…
In vivo evaluation of the toxicity, genotoxicity, histopathological, and anti-inflammatory effects of the purified bioglycerol byproduct in biodiesel industry
BACKGROUND: Biodiesel has gained an increased popularity as a good alternative for fossil fuel because of its unusual qualities as a biodegradable, nontoxic, and renewable diesel fuel. Hence, the economic utilization of the accumulated bioglycerol byproduct became critically important for the sustai...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561648/ https://www.ncbi.nlm.nih.gov/pubmed/33057939 http://dx.doi.org/10.1186/s43141-020-00079-x |
Sumario: | BACKGROUND: Biodiesel has gained an increased popularity as a good alternative for fossil fuel because of its unusual qualities as a biodegradable, nontoxic, and renewable diesel fuel. Hence, the economic utilization of the accumulated bioglycerol byproduct became critically important for the sustainability of biodiesel industry. The purified bioglycerol might be used as a valuable industrial stock in cosmetic, medical, and food industries. However, if the purified product is going to be used in food, drug, or any industry that involves its ingestion or skin contact by human or animals, the product should be thoroughly tested on animal models. RESULTS: The present study investigated the acute toxicity, anti-inflammatory, histopathological, and genotoxic effects of zeolite-purified biogylcerol on different animal models. All the previous tests proved the ability of the purification process to improve the qualities of the crude bioglycerol to a degree comparable to the pharmaceutical grade glycerol. CONCLUSION: In other words, it could be concluded that zeolite-purified bioglycerol can be used in different industries that involves products consumed by human or animals. |
---|