Cargando…
Discovering spatial interaction patterns of near repeat crime by spatial association rules mining
Urban crime incidents always exhibit a structure of spatio-temporal dependence. Exploration of the spatio-temporal interactions of crime incidents is critical to understanding the occurrence mechanism and spatial transmission characteristics of crime occurrences, therefore facilitating the determina...
Autores principales: | He, Zhanjun, Tao, Liufeng, Xie, Zhong, Xu, Chong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7561722/ https://www.ncbi.nlm.nih.gov/pubmed/33057212 http://dx.doi.org/10.1038/s41598-020-74248-w |
Ejemplares similares
-
Identifying the appropriate spatial resolution for the analysis of crime patterns
por: Malleson, Nick, et al.
Publicado: (2019) -
Discovering protein–DNA binding sequence patterns using association rule mining
por: Leung, Kwong-Sak, et al.
Publicado: (2010) -
Discovering symptom patterns of COVID-19 patients using association rule mining
por: Tandan, Meera, et al.
Publicado: (2021) -
An Association Rule Mining Approach to Discover lncRNAs Expression Patterns in Cancer Datasets
por: Cremaschi, Paolo, et al.
Publicado: (2015) -
A systematic review on spatial crime forecasting
por: Kounadi, Ourania, et al.
Publicado: (2020)