Cargando…
Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient β-catenin degradation
The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3β and CK1 to earmark β-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of β-caten...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562749/ https://www.ncbi.nlm.nih.gov/pubmed/33060621 http://dx.doi.org/10.1038/s41598-020-74080-2 |
Sumario: | The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3β and CK1 to earmark β-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of β-catenin and oncogenesis. However, the molecular mechanism by which APC promotes β-catenin degradation is unclear. Here, we find that the intrinsically disordered region (IDR) of APC, which contains multiple β-catenin and Axin interacting sites, undergoes liquid–liquid phase separation (LLPS) in vitro. Expression of the APC IDR in colorectal cells promotes Axin puncta formation and β-catenin degradation. Our results support the model that multivalent interactions between APC and Axin drives the β-catenin destruction complex to form biomolecular condensates in cells, which concentrate key components to achieve high efficient degradation of β-catenin. |
---|