Cargando…

Multivalent tumor suppressor adenomatous polyposis coli promotes Axin biomolecular condensate formation and efficient β-catenin degradation

The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3β and CK1 to earmark β-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of β-caten...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Tie-Mei, Ren, Jing, Husmann, Dylan, Coan, John P., Gozani, Or, Chua, Katrin F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562749/
https://www.ncbi.nlm.nih.gov/pubmed/33060621
http://dx.doi.org/10.1038/s41598-020-74080-2
Descripción
Sumario:The tumor suppressor adenomatous polyposis coli (APC) is frequently mutated in colorectal cancers. APC and Axin are core components of a destruction complex that scaffolds GSK3β and CK1 to earmark β-catenin for proteosomal degradation. Disruption of APC results in pathologic stabilization of β-catenin and oncogenesis. However, the molecular mechanism by which APC promotes β-catenin degradation is unclear. Here, we find that the intrinsically disordered region (IDR) of APC, which contains multiple β-catenin and Axin interacting sites, undergoes liquid–liquid phase separation (LLPS) in vitro. Expression of the APC IDR in colorectal cells promotes Axin puncta formation and β-catenin degradation. Our results support the model that multivalent interactions between APC and Axin drives the β-catenin destruction complex to form biomolecular condensates in cells, which concentrate key components to achieve high efficient degradation of β-catenin.