Cargando…

Long-range exciton diffusion in molecular non-fullerene acceptors

The short exciton diffusion length associated with most classical organic semiconductors used in organic photovoltaics (5-20 nm) imposes severe limits on the maximum size of the donor and acceptor domains within the photoactive layer of the cell. Identifying materials that are able to transport exci...

Descripción completa

Detalles Bibliográficos
Autores principales: Firdaus, Yuliar, Le Corre, Vincent M., Karuthedath, Safakath, Liu, Wenlan, Markina, Anastasia, Huang, Wentao, Chattopadhyay, Shirsopratim, Nahid, Masrur Morshed, Nugraha, Mohamad I., Lin, Yuanbao, Seitkhan, Akmaral, Basu, Aniruddha, Zhang, Weimin, McCulloch, Iain, Ade, Harald, Labram, John, Laquai, Frédéric, Andrienko, Denis, Koster, L. Jan Anton, Anthopoulos, Thomas D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562871/
https://www.ncbi.nlm.nih.gov/pubmed/33060574
http://dx.doi.org/10.1038/s41467-020-19029-9
_version_ 1783595367055491072
author Firdaus, Yuliar
Le Corre, Vincent M.
Karuthedath, Safakath
Liu, Wenlan
Markina, Anastasia
Huang, Wentao
Chattopadhyay, Shirsopratim
Nahid, Masrur Morshed
Nugraha, Mohamad I.
Lin, Yuanbao
Seitkhan, Akmaral
Basu, Aniruddha
Zhang, Weimin
McCulloch, Iain
Ade, Harald
Labram, John
Laquai, Frédéric
Andrienko, Denis
Koster, L. Jan Anton
Anthopoulos, Thomas D.
author_facet Firdaus, Yuliar
Le Corre, Vincent M.
Karuthedath, Safakath
Liu, Wenlan
Markina, Anastasia
Huang, Wentao
Chattopadhyay, Shirsopratim
Nahid, Masrur Morshed
Nugraha, Mohamad I.
Lin, Yuanbao
Seitkhan, Akmaral
Basu, Aniruddha
Zhang, Weimin
McCulloch, Iain
Ade, Harald
Labram, John
Laquai, Frédéric
Andrienko, Denis
Koster, L. Jan Anton
Anthopoulos, Thomas D.
author_sort Firdaus, Yuliar
collection PubMed
description The short exciton diffusion length associated with most classical organic semiconductors used in organic photovoltaics (5-20 nm) imposes severe limits on the maximum size of the donor and acceptor domains within the photoactive layer of the cell. Identifying materials that are able to transport excitons over longer distances can help advancing our understanding and lead to solar cells with higher efficiency. Here, we measure the exciton diffusion length in a wide range of nonfullerene acceptor molecules using two different experimental techniques based on photocurrent and ultrafast spectroscopy measurements. The acceptors exhibit balanced ambipolar charge transport and surprisingly long exciton diffusion lengths in the range of 20 to 47 nm. With the aid of quantum-chemical calculations, we are able to rationalize the exciton dynamics and draw basic chemical design rules, particularly on the importance of the end-group substituent on the crystal packing of nonfullerene acceptors.
format Online
Article
Text
id pubmed-7562871
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75628712020-10-19 Long-range exciton diffusion in molecular non-fullerene acceptors Firdaus, Yuliar Le Corre, Vincent M. Karuthedath, Safakath Liu, Wenlan Markina, Anastasia Huang, Wentao Chattopadhyay, Shirsopratim Nahid, Masrur Morshed Nugraha, Mohamad I. Lin, Yuanbao Seitkhan, Akmaral Basu, Aniruddha Zhang, Weimin McCulloch, Iain Ade, Harald Labram, John Laquai, Frédéric Andrienko, Denis Koster, L. Jan Anton Anthopoulos, Thomas D. Nat Commun Article The short exciton diffusion length associated with most classical organic semiconductors used in organic photovoltaics (5-20 nm) imposes severe limits on the maximum size of the donor and acceptor domains within the photoactive layer of the cell. Identifying materials that are able to transport excitons over longer distances can help advancing our understanding and lead to solar cells with higher efficiency. Here, we measure the exciton diffusion length in a wide range of nonfullerene acceptor molecules using two different experimental techniques based on photocurrent and ultrafast spectroscopy measurements. The acceptors exhibit balanced ambipolar charge transport and surprisingly long exciton diffusion lengths in the range of 20 to 47 nm. With the aid of quantum-chemical calculations, we are able to rationalize the exciton dynamics and draw basic chemical design rules, particularly on the importance of the end-group substituent on the crystal packing of nonfullerene acceptors. Nature Publishing Group UK 2020-10-15 /pmc/articles/PMC7562871/ /pubmed/33060574 http://dx.doi.org/10.1038/s41467-020-19029-9 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Firdaus, Yuliar
Le Corre, Vincent M.
Karuthedath, Safakath
Liu, Wenlan
Markina, Anastasia
Huang, Wentao
Chattopadhyay, Shirsopratim
Nahid, Masrur Morshed
Nugraha, Mohamad I.
Lin, Yuanbao
Seitkhan, Akmaral
Basu, Aniruddha
Zhang, Weimin
McCulloch, Iain
Ade, Harald
Labram, John
Laquai, Frédéric
Andrienko, Denis
Koster, L. Jan Anton
Anthopoulos, Thomas D.
Long-range exciton diffusion in molecular non-fullerene acceptors
title Long-range exciton diffusion in molecular non-fullerene acceptors
title_full Long-range exciton diffusion in molecular non-fullerene acceptors
title_fullStr Long-range exciton diffusion in molecular non-fullerene acceptors
title_full_unstemmed Long-range exciton diffusion in molecular non-fullerene acceptors
title_short Long-range exciton diffusion in molecular non-fullerene acceptors
title_sort long-range exciton diffusion in molecular non-fullerene acceptors
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562871/
https://www.ncbi.nlm.nih.gov/pubmed/33060574
http://dx.doi.org/10.1038/s41467-020-19029-9
work_keys_str_mv AT firdausyuliar longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT lecorrevincentm longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT karuthedathsafakath longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT liuwenlan longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT markinaanastasia longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT huangwentao longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT chattopadhyayshirsopratim longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT nahidmasrurmorshed longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT nugrahamohamadi longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT linyuanbao longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT seitkhanakmaral longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT basuaniruddha longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT zhangweimin longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT mccullochiain longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT adeharald longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT labramjohn longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT laquaifrederic longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT andrienkodenis longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT kosterljananton longrangeexcitondiffusioninmolecularnonfullereneacceptors
AT anthopoulosthomasd longrangeexcitondiffusioninmolecularnonfullereneacceptors