Cargando…

Electrophysiological Maturation of Cerebral Organoids Correlates with Dynamic Morphological and Cellular Development

Cerebral organoids (COs) are rapidly accelerating the rate of translational neuroscience based on their potential to model complex features of the developing human brain. Several studies have examined the electrophysiological and neural network features of COs; however, no study has comprehensively...

Descripción completa

Detalles Bibliográficos
Autores principales: Fair, Summer R., Julian, Dominic, Hartlaub, Annalisa M., Pusuluri, Sai Teja, Malik, Girik, Summerfied, Taryn L., Zhao, Guomao, Hester, Arelis B., Ackerman, William E., Hollingsworth, Ethan W., Ali, Mehboob, McElroy, Craig A., Buhimschi, Irina A., Imitola, Jaime, Maitre, Nathalie L., Bedrosian, Tracy A., Hester, Mark E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562943/
https://www.ncbi.nlm.nih.gov/pubmed/32976764
http://dx.doi.org/10.1016/j.stemcr.2020.08.017
Descripción
Sumario:Cerebral organoids (COs) are rapidly accelerating the rate of translational neuroscience based on their potential to model complex features of the developing human brain. Several studies have examined the electrophysiological and neural network features of COs; however, no study has comprehensively investigated the developmental trajectory of electrophysiological properties in whole-brain COs and correlated these properties with developmentally linked morphological and cellular features. Here, we profiled the neuroelectrical activities of COs over the span of 5 months with a multi-electrode array platform and observed the emergence and maturation of several electrophysiologic properties, including rapid firing rates and network bursting events. To complement these analyses, we characterized the complex molecular and cellular development that gives rise to these mature neuroelectrical properties with immunohistochemical and single-cell transcriptomic analyses. This integrated approach highlights the value of COs as an emerging model system of human brain development and neurological disease.