Cargando…
On the effects of memory and topology on the controllability of complex dynamical networks
Recent advances in network science, control theory, and fractional calculus provide us with mathematical tools necessary for modeling and controlling complex dynamical networks (CDNs) that exhibit long-term memory. Selecting the minimum number of driven nodes such that the network is steered to a pr...
Autores principales: | Kyriakis, Panagiotis, Pequito, Sérgio, Bogdan, Paul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7562949/ https://www.ncbi.nlm.nih.gov/pubmed/33060617 http://dx.doi.org/10.1038/s41598-020-74269-5 |
Ejemplares similares
-
The role of long-term power-law memory in controlling large-scale dynamical networks
por: Reed, Emily A., et al.
Publicado: (2023) -
Editorial: Inference, Causality and Control in Networks of Dynamical Systems: Data Science and Modeling Perspectives to Network Physiology With Implications for Artificial Intelligence
por: Bogdan, Paul, et al.
Publicado: (2022) -
Generating complex networks with time-to-control communities
por: Ramos, Guilherme, et al.
Publicado: (2020) -
Topology Effects on Sparse Control of Complex Networks with Laplacian Dynamics
por: Constantino, Pedro H., et al.
Publicado: (2019) -
Trade-offs between driving nodes and time-to-control in complex networks
por: Pequito, Sérgio, et al.
Publicado: (2017)