Cargando…
Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer
Background: Serine Threonine Kinase 11 (STK11), also known as LKB1, is a tumor suppressor gene that regulates several biological processes such as apoptosis, energetic metabolism, proliferation, invasion, and migration. During malignant progression, different types of cancer inhibit STK11 function b...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563199/ https://www.ncbi.nlm.nih.gov/pubmed/32911741 http://dx.doi.org/10.3390/genes11091058 |
_version_ | 1783595437594247168 |
---|---|
author | Figueroa-González, Gabriela Carrillo-Hernández, José F. Perez-Rodriguez, Itzel Cantú de León, David Campos-Parra, Alma D. Martínez-Gutiérrez, Antonio D. Coronel-Hernández, Jossimar García-Castillo, Verónica López-Camarillo, César Peralta-Zaragoza, Oscar Jacobo-Herrera, Nadia J. Guardado-Estrada, Mariano Pérez-Plasencia, Carlos |
author_facet | Figueroa-González, Gabriela Carrillo-Hernández, José F. Perez-Rodriguez, Itzel Cantú de León, David Campos-Parra, Alma D. Martínez-Gutiérrez, Antonio D. Coronel-Hernández, Jossimar García-Castillo, Verónica López-Camarillo, César Peralta-Zaragoza, Oscar Jacobo-Herrera, Nadia J. Guardado-Estrada, Mariano Pérez-Plasencia, Carlos |
author_sort | Figueroa-González, Gabriela |
collection | PubMed |
description | Background: Serine Threonine Kinase 11 (STK11), also known as LKB1, is a tumor suppressor gene that regulates several biological processes such as apoptosis, energetic metabolism, proliferation, invasion, and migration. During malignant progression, different types of cancer inhibit STK11 function by mutation or epigenetic inactivation. In Head and Neck Cancer, it is unclear what mechanism is involved in decreasing STK11 levels. Thus, the present work aims to determine whether STK11 expression might be regulated through epigenetic or post-translational mechanisms. Methods: Expression levels and methylation status for STK11 were analyzed in 59 cases of head and neck cancer and 10 healthy tissue counterparts. Afterward, we sought to identify candidate miRNAs exerting post-transcriptional regulation of STK11. Then, we assessed a luciferase gene reporter assay to know if miRNAs directly target STK11 mRNA. The expression levels of the clinical significance of mir-100-3p, -5p, and STK11 in 495 HNC specimens obtained from the TCGA database were further analyzed. Finally, the Kaplan–Meier method was used to estimate the prognostic significance of the miRNAs for Overall Survival, and survival curves were compared through the log-rank test. Results: STK11 was under-expressed, and its promoter region was demethylated or partially methylated. miR-17-5p, miR-106a-5p, miR-100-3p, and miR-100-5p could be negative regulators of STK11. Our experimental data suggested evidence that miR-100-3p and -5p were over-expressed in analyzed tumor patient samples. Luciferase gene reporter assay experiments showed that miR-100-3p targets and down-regulates STK11 mRNA directly. With respect to overall survival, STK11 expression level was significant for predicting clinical outcomes. Conclusion: This is, to our knowledge, the first report of miR-100-3p targeting STK11 in HNC. Together, these findings may support the importance of regulation of STK11 through post-transcriptional regulation in HNC and the possible contribution to the carcinogenesis process in this neoplasia. |
format | Online Article Text |
id | pubmed-7563199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75631992020-10-27 Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer Figueroa-González, Gabriela Carrillo-Hernández, José F. Perez-Rodriguez, Itzel Cantú de León, David Campos-Parra, Alma D. Martínez-Gutiérrez, Antonio D. Coronel-Hernández, Jossimar García-Castillo, Verónica López-Camarillo, César Peralta-Zaragoza, Oscar Jacobo-Herrera, Nadia J. Guardado-Estrada, Mariano Pérez-Plasencia, Carlos Genes (Basel) Article Background: Serine Threonine Kinase 11 (STK11), also known as LKB1, is a tumor suppressor gene that regulates several biological processes such as apoptosis, energetic metabolism, proliferation, invasion, and migration. During malignant progression, different types of cancer inhibit STK11 function by mutation or epigenetic inactivation. In Head and Neck Cancer, it is unclear what mechanism is involved in decreasing STK11 levels. Thus, the present work aims to determine whether STK11 expression might be regulated through epigenetic or post-translational mechanisms. Methods: Expression levels and methylation status for STK11 were analyzed in 59 cases of head and neck cancer and 10 healthy tissue counterparts. Afterward, we sought to identify candidate miRNAs exerting post-transcriptional regulation of STK11. Then, we assessed a luciferase gene reporter assay to know if miRNAs directly target STK11 mRNA. The expression levels of the clinical significance of mir-100-3p, -5p, and STK11 in 495 HNC specimens obtained from the TCGA database were further analyzed. Finally, the Kaplan–Meier method was used to estimate the prognostic significance of the miRNAs for Overall Survival, and survival curves were compared through the log-rank test. Results: STK11 was under-expressed, and its promoter region was demethylated or partially methylated. miR-17-5p, miR-106a-5p, miR-100-3p, and miR-100-5p could be negative regulators of STK11. Our experimental data suggested evidence that miR-100-3p and -5p were over-expressed in analyzed tumor patient samples. Luciferase gene reporter assay experiments showed that miR-100-3p targets and down-regulates STK11 mRNA directly. With respect to overall survival, STK11 expression level was significant for predicting clinical outcomes. Conclusion: This is, to our knowledge, the first report of miR-100-3p targeting STK11 in HNC. Together, these findings may support the importance of regulation of STK11 through post-transcriptional regulation in HNC and the possible contribution to the carcinogenesis process in this neoplasia. MDPI 2020-09-08 /pmc/articles/PMC7563199/ /pubmed/32911741 http://dx.doi.org/10.3390/genes11091058 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Figueroa-González, Gabriela Carrillo-Hernández, José F. Perez-Rodriguez, Itzel Cantú de León, David Campos-Parra, Alma D. Martínez-Gutiérrez, Antonio D. Coronel-Hernández, Jossimar García-Castillo, Verónica López-Camarillo, César Peralta-Zaragoza, Oscar Jacobo-Herrera, Nadia J. Guardado-Estrada, Mariano Pérez-Plasencia, Carlos Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer |
title | Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer |
title_full | Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer |
title_fullStr | Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer |
title_full_unstemmed | Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer |
title_short | Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer |
title_sort | negative regulation of serine threonine kinase 11 (stk11) through mir-100 in head and neck cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563199/ https://www.ncbi.nlm.nih.gov/pubmed/32911741 http://dx.doi.org/10.3390/genes11091058 |
work_keys_str_mv | AT figueroagonzalezgabriela negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT carrillohernandezjosef negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT perezrodriguezitzel negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT cantudeleondavid negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT camposparraalmad negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT martinezgutierrezantoniod negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT coronelhernandezjossimar negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT garciacastilloveronica negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT lopezcamarillocesar negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT peraltazaragozaoscar negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT jacoboherreranadiaj negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT guardadoestradamariano negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer AT perezplasenciacarlos negativeregulationofserinethreoninekinase11stk11throughmir100inheadandneckcancer |