Cargando…
Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis
We report whole-genome and intra-host variability of SARS-Cov-2 assessed by next generation sequencing (NGS) in upper (URT) and lower respiratory tract (LRT) from COVID-19 patients. The aim was to identify possible tissue-specific patterns and signatures of variant selection for each respiratory com...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563410/ https://www.ncbi.nlm.nih.gov/pubmed/32858978 http://dx.doi.org/10.3390/microorganisms8091302 |
_version_ | 1783595483519778816 |
---|---|
author | Rueca, Martina Bartolini, Barbara Gruber, Cesare Ernesto Maria Piralla, Antonio Baldanti, Fausto Giombini, Emanuela Messina, Francesco Marchioni, Luisa Ippolito, Giuseppe Di Caro, Antonino Capobianchi, Maria Rosaria |
author_facet | Rueca, Martina Bartolini, Barbara Gruber, Cesare Ernesto Maria Piralla, Antonio Baldanti, Fausto Giombini, Emanuela Messina, Francesco Marchioni, Luisa Ippolito, Giuseppe Di Caro, Antonino Capobianchi, Maria Rosaria |
author_sort | Rueca, Martina |
collection | PubMed |
description | We report whole-genome and intra-host variability of SARS-Cov-2 assessed by next generation sequencing (NGS) in upper (URT) and lower respiratory tract (LRT) from COVID-19 patients. The aim was to identify possible tissue-specific patterns and signatures of variant selection for each respiratory compartment. Six patients, admitted to the Intensive Care Unit, were included in the study. Thirteen URT and LRT were analyzed by NGS amplicon-based approach on Ion Torrent Platform. Bioinformatic analysis was performed using both realized in-house and supplied by ThermoFisher programs. Phylogenesis showed clade V clustering of the first patients diagnosed in Italy, and clade G for later strains. The presence of quasispecies was observed, with variants uniformly distributed along the genome and frequency of minority variants spanning from 1% to ~30%. For each patient, the patterns of variants in URT and LRT were profoundly different, indicating compartmentalized virus replication. No clear variant signature and no significant difference in nucleotide diversity between LRT and URT were observed. SARS-CoV-2 presents genetic heterogeneity and quasispecies compartmentalization in URT and LRT. Intra-patient diversity was low. The pattern of minority variants was highly heterogeneous and no specific district signature could be identified, nevertheless, analysis of samples, longitudinally collected in patients, supported quasispecies evolution. |
format | Online Article Text |
id | pubmed-7563410 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75634102020-10-27 Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis Rueca, Martina Bartolini, Barbara Gruber, Cesare Ernesto Maria Piralla, Antonio Baldanti, Fausto Giombini, Emanuela Messina, Francesco Marchioni, Luisa Ippolito, Giuseppe Di Caro, Antonino Capobianchi, Maria Rosaria Microorganisms Article We report whole-genome and intra-host variability of SARS-Cov-2 assessed by next generation sequencing (NGS) in upper (URT) and lower respiratory tract (LRT) from COVID-19 patients. The aim was to identify possible tissue-specific patterns and signatures of variant selection for each respiratory compartment. Six patients, admitted to the Intensive Care Unit, were included in the study. Thirteen URT and LRT were analyzed by NGS amplicon-based approach on Ion Torrent Platform. Bioinformatic analysis was performed using both realized in-house and supplied by ThermoFisher programs. Phylogenesis showed clade V clustering of the first patients diagnosed in Italy, and clade G for later strains. The presence of quasispecies was observed, with variants uniformly distributed along the genome and frequency of minority variants spanning from 1% to ~30%. For each patient, the patterns of variants in URT and LRT were profoundly different, indicating compartmentalized virus replication. No clear variant signature and no significant difference in nucleotide diversity between LRT and URT were observed. SARS-CoV-2 presents genetic heterogeneity and quasispecies compartmentalization in URT and LRT. Intra-patient diversity was low. The pattern of minority variants was highly heterogeneous and no specific district signature could be identified, nevertheless, analysis of samples, longitudinally collected in patients, supported quasispecies evolution. MDPI 2020-08-26 /pmc/articles/PMC7563410/ /pubmed/32858978 http://dx.doi.org/10.3390/microorganisms8091302 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rueca, Martina Bartolini, Barbara Gruber, Cesare Ernesto Maria Piralla, Antonio Baldanti, Fausto Giombini, Emanuela Messina, Francesco Marchioni, Luisa Ippolito, Giuseppe Di Caro, Antonino Capobianchi, Maria Rosaria Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis |
title | Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis |
title_full | Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis |
title_fullStr | Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis |
title_full_unstemmed | Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis |
title_short | Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis |
title_sort | compartmentalized replication of sars-cov-2 in upper vs. lower respiratory tract assessed by whole genome quasispecies analysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563410/ https://www.ncbi.nlm.nih.gov/pubmed/32858978 http://dx.doi.org/10.3390/microorganisms8091302 |
work_keys_str_mv | AT ruecamartina compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT bartolinibarbara compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT grubercesareernestomaria compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT pirallaantonio compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT baldantifausto compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT giombiniemanuela compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT messinafrancesco compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT marchioniluisa compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT ippolitogiuseppe compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT dicaroantonino compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis AT capobianchimariarosaria compartmentalizedreplicationofsarscov2inuppervslowerrespiratorytractassessedbywholegenomequasispeciesanalysis |