Cargando…
Fully-Connected Neural Networks with Reduced Parameterization for Predicting Histological Types of Lung Cancer from Somatic Mutations
Several challenges appear in the application of deep learning to genomic data. First, the dimensionality of input can be orders of magnitude greater than the number of samples, forcing the model to be prone to overfitting the training dataset. Second, each input variable’s contribution to the predic...
Autores principales: | Kobayashi, Kazuma, Bolatkan, Amina, Shiina, Shuichiro, Hamamoto, Ryuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563438/ https://www.ncbi.nlm.nih.gov/pubmed/32872133 http://dx.doi.org/10.3390/biom10091249 |
Ejemplares similares
-
Downregulation of METTL6 mitigates cell progression, migration, invasion and adhesion in hepatocellular carcinoma by inhibiting cell adhesion molecules
por: Bolatkan, Amina, et al.
Publicado: (2021) -
Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data
por: Takahashi, Satoshi, et al.
Publicado: (2020) -
Single-Cell Analysis Using Machine Learning Techniques and Its Application to Medical Research
por: Asada, Ken, et al.
Publicado: (2021) -
Epigenetic Mechanisms Underlying COVID-19 Pathogenesis
por: Kaneko, Syuzo, et al.
Publicado: (2021) -
Critical Roles of N(6)-Methyladenosine (m(6)A) in Cancer and Virus Infection
por: Asada, Ken, et al.
Publicado: (2020)