Cargando…
Detecting Interactive Gene Groups for Single-Cell RNA-Seq Data Based on Co-Expression Network Analysis and Subgraph Learning
High-throughput sequencing technologies have enabled the generation of single-cell RNA-seq (scRNA-seq) data, which explore both genetic heterogeneity and phenotypic variation between cells. Some methods have been proposed to detect the related genes causing cell-to-cell variability for understanding...
Autores principales: | Ye, Xiucai, Zhang, Weihang, Futamura, Yasunori, Sakurai, Tetsuya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563496/ https://www.ncbi.nlm.nih.gov/pubmed/32825786 http://dx.doi.org/10.3390/cells9091938 |
Ejemplares similares
-
Missing Value Imputation With Low-Rank Matrix Completion in Single-Cell RNA-Seq Data by Considering Cell Heterogeneity
por: Huang, Meng, et al.
Publicado: (2022) -
Subgraph Learning for Topological Geolocalization with Graph Neural Networks
por: Zha, Bing, et al.
Publicado: (2023) -
Mining functional subgraphs from cancer protein-protein interaction networks
por: Shen, Ru, et al.
Publicado: (2012) -
Significant Subgraph Detection in Multi-omics Networks for Disease Pathway Identification
por: Abdel-Hafiz, Mohamed, et al.
Publicado: (2022) -
SubRank: Subgraph Embeddings via a Subgraph Proximity Measure
por: Balalau, Oana, et al.
Publicado: (2020)