Cargando…
Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial
IMPORTANCE: Serious illness conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Interventions that increase the rate of SICs between oncology clinicians and patients may improve goal-concordant care and pati...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563672/ https://www.ncbi.nlm.nih.gov/pubmed/33057696 http://dx.doi.org/10.1001/jamaoncol.2020.4759 |
_version_ | 1783595540457455616 |
---|---|
author | Manz, Christopher R. Parikh, Ravi B. Small, Dylan S. Evans, Chalanda N. Chivers, Corey Regli, Susan H. Hanson, C. William Bekelman, Justin E. Rareshide, Charles A. L. O’Connor, Nina Schuchter, Lynn M. Shulman, Lawrence N. Patel, Mitesh S. |
author_facet | Manz, Christopher R. Parikh, Ravi B. Small, Dylan S. Evans, Chalanda N. Chivers, Corey Regli, Susan H. Hanson, C. William Bekelman, Justin E. Rareshide, Charles A. L. O’Connor, Nina Schuchter, Lynn M. Shulman, Lawrence N. Patel, Mitesh S. |
author_sort | Manz, Christopher R. |
collection | PubMed |
description | IMPORTANCE: Serious illness conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Interventions that increase the rate of SICs between oncology clinicians and patients may improve goal-concordant care and patient outcomes. OBJECTIVE: To determine the effect of a clinician-directed intervention integrating machine learning mortality predictions with behavioral nudges on motivating clinician-patient SICs. DESIGN, SETTING, AND PARTICIPANTS: This stepped-wedge cluster randomized clinical trial was conducted across 20 weeks (from June 17 to November 1, 2019) at 9 medical oncology clinics (8 subspecialty oncology and 1 general oncology clinics) within a large academic health system in Pennsylvania. Clinicians at the 2 smallest subspecialty clinics were grouped together, resulting in 8 clinic groups randomly assigned to the 4 intervention wedge periods. Included participants in the intention-to-treat analyses were 78 oncology clinicians who received SIC training and their patients (N = 14 607) who had an outpatient oncology encounter during the study period. INTERVENTIONS: (1) Weekly emails to oncology clinicians with SIC performance feedback and peer comparisons; (2) a list of up to 6 high-risk patients (≥10% predicted risk of 180-day mortality) scheduled for the next week, estimated using a validated machine learning algorithm; and (3) opt-out text message prompts to clinicians on the patient’s appointment day to consider an SIC. Clinicians in the control group received usual care consisting of weekly emails with cumulative SIC performance. MAIN OUTCOMES AND MEASURES: Percentage of patient encounters with an SIC in the intervention group vs the usual care (control) group. RESULTS: The sample consisted of 78 clinicians and 14 607 patients. The mean (SD) age of patients was 61.9 (14.2) years, 53.7% were female, and 70.4% were White. For all encounters, SICs were conducted among 1.3% in the control group and 4.6% in the intervention group, a significant difference (adjusted difference in percentage points, 3.3; 95% CI, 2.3-4.5; P < .001). Among 4124 high-risk patient encounters, SICs were conducted among 3.6% in the control group and 15.2% in the intervention group, a significant difference (adjusted difference in percentage points, 11.6; 95% CI, 8.2-12.5; P < .001). CONCLUSIONS AND RELEVANCE: In this stepped-wedge cluster randomized clinical trial, an intervention that delivered machine learning mortality predictions with behavioral nudges to oncology clinicians significantly increased the rate of SICs among all patients and among patients with high mortality risk who were targeted by the intervention. Behavioral nudges combined with machine learning mortality predictions can positively influence clinician behavior and may be applied more broadly to improve care near the end of life. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03984773 |
format | Online Article Text |
id | pubmed-7563672 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Medical Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-75636722020-10-19 Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial Manz, Christopher R. Parikh, Ravi B. Small, Dylan S. Evans, Chalanda N. Chivers, Corey Regli, Susan H. Hanson, C. William Bekelman, Justin E. Rareshide, Charles A. L. O’Connor, Nina Schuchter, Lynn M. Shulman, Lawrence N. Patel, Mitesh S. JAMA Oncol Original Investigation IMPORTANCE: Serious illness conversations (SICs) are structured conversations between clinicians and patients about prognosis, treatment goals, and end-of-life preferences. Interventions that increase the rate of SICs between oncology clinicians and patients may improve goal-concordant care and patient outcomes. OBJECTIVE: To determine the effect of a clinician-directed intervention integrating machine learning mortality predictions with behavioral nudges on motivating clinician-patient SICs. DESIGN, SETTING, AND PARTICIPANTS: This stepped-wedge cluster randomized clinical trial was conducted across 20 weeks (from June 17 to November 1, 2019) at 9 medical oncology clinics (8 subspecialty oncology and 1 general oncology clinics) within a large academic health system in Pennsylvania. Clinicians at the 2 smallest subspecialty clinics were grouped together, resulting in 8 clinic groups randomly assigned to the 4 intervention wedge periods. Included participants in the intention-to-treat analyses were 78 oncology clinicians who received SIC training and their patients (N = 14 607) who had an outpatient oncology encounter during the study period. INTERVENTIONS: (1) Weekly emails to oncology clinicians with SIC performance feedback and peer comparisons; (2) a list of up to 6 high-risk patients (≥10% predicted risk of 180-day mortality) scheduled for the next week, estimated using a validated machine learning algorithm; and (3) opt-out text message prompts to clinicians on the patient’s appointment day to consider an SIC. Clinicians in the control group received usual care consisting of weekly emails with cumulative SIC performance. MAIN OUTCOMES AND MEASURES: Percentage of patient encounters with an SIC in the intervention group vs the usual care (control) group. RESULTS: The sample consisted of 78 clinicians and 14 607 patients. The mean (SD) age of patients was 61.9 (14.2) years, 53.7% were female, and 70.4% were White. For all encounters, SICs were conducted among 1.3% in the control group and 4.6% in the intervention group, a significant difference (adjusted difference in percentage points, 3.3; 95% CI, 2.3-4.5; P < .001). Among 4124 high-risk patient encounters, SICs were conducted among 3.6% in the control group and 15.2% in the intervention group, a significant difference (adjusted difference in percentage points, 11.6; 95% CI, 8.2-12.5; P < .001). CONCLUSIONS AND RELEVANCE: In this stepped-wedge cluster randomized clinical trial, an intervention that delivered machine learning mortality predictions with behavioral nudges to oncology clinicians significantly increased the rate of SICs among all patients and among patients with high mortality risk who were targeted by the intervention. Behavioral nudges combined with machine learning mortality predictions can positively influence clinician behavior and may be applied more broadly to improve care near the end of life. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT03984773 American Medical Association 2020-10-15 2020-12 /pmc/articles/PMC7563672/ /pubmed/33057696 http://dx.doi.org/10.1001/jamaoncol.2020.4759 Text en Copyright 2020 Manz CR et al. JAMA Oncology. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the CC-BY License. |
spellingShingle | Original Investigation Manz, Christopher R. Parikh, Ravi B. Small, Dylan S. Evans, Chalanda N. Chivers, Corey Regli, Susan H. Hanson, C. William Bekelman, Justin E. Rareshide, Charles A. L. O’Connor, Nina Schuchter, Lynn M. Shulman, Lawrence N. Patel, Mitesh S. Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial |
title | Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial |
title_full | Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial |
title_fullStr | Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial |
title_full_unstemmed | Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial |
title_short | Effect of Integrating Machine Learning Mortality Estimates With Behavioral Nudges to Clinicians on Serious Illness Conversations Among Patients With Cancer: A Stepped-Wedge Cluster Randomized Clinical Trial |
title_sort | effect of integrating machine learning mortality estimates with behavioral nudges to clinicians on serious illness conversations among patients with cancer: a stepped-wedge cluster randomized clinical trial |
topic | Original Investigation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563672/ https://www.ncbi.nlm.nih.gov/pubmed/33057696 http://dx.doi.org/10.1001/jamaoncol.2020.4759 |
work_keys_str_mv | AT manzchristopherr effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT parikhravib effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT smalldylans effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT evanschalandan effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT chiverscorey effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT reglisusanh effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT hansoncwilliam effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT bekelmanjustine effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT rareshidecharlesal effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT oconnornina effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT schuchterlynnm effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT shulmanlawrencen effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial AT patelmiteshs effectofintegratingmachinelearningmortalityestimateswithbehavioralnudgestocliniciansonseriousillnessconversationsamongpatientswithcancerasteppedwedgeclusterrandomizedclinicaltrial |