Cargando…

Immunoinformatic Analysis of T- and B-Cell Epitopes for SARS-CoV-2 Vaccine Design

Currently, there is limited knowledge about the immunological profiles of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We used computer-based immunoinformatic analysis and the newly resolved 3-dimensional (3D) structures of the SARS-CoV-2 S trimeric protein, together with analyses o...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Dongliang, Mai, Jinhui, Zhou, Wenfeng, Yu, Wanting, Zhan, Yang, Wang, Naidong, Epstein, Neal D., Yang, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563688/
https://www.ncbi.nlm.nih.gov/pubmed/32635180
http://dx.doi.org/10.3390/vaccines8030355
Descripción
Sumario:Currently, there is limited knowledge about the immunological profiles of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). We used computer-based immunoinformatic analysis and the newly resolved 3-dimensional (3D) structures of the SARS-CoV-2 S trimeric protein, together with analyses of the immunogenic profiles of SARS-CoV, to anticipate potential B-cell and T-cell epitopes of the SARS-CoV-2 S protein for vaccine design, particularly for peptide-driven vaccine design and serological diagnosis. Nine conserved linear B-cell epitopes and multiple discontinuous B-cell epitopes composed of 69 residues on the surface of the SARS-CoV-2 trimeric S protein were predicted to be highly antigenic. We found that the SARS-CoV-2 S protein has a different antigenic profile than that of the SARS-CoV S protein due to the variations in their primary and 3D structures. Importantly, SARS-CoV-2 may exploit an immune evasion mechanism through two point mutations in the critical and conserved linear neutralization epitope (overlap with fusion peptide) around a sparsely glycosylated area. These mutations lead to a significant decrease in the antigenicity of this epitope in the SARS-CoV-2 S protein. In addition, 62 T-cell epitopes in the SARS-CoV-2 S protein were predicted in our study. The structure-based immunoinformatic analysis for the SARS-CoV-2 S protein in this study may improve vaccine design, diagnosis, and immunotherapy against the pandemic of COVID-19.