Cargando…
Design and Characterization of a Minimally Invasive Bipolar Electrode for Electroporation
SIMPLE SUMMARY: The objective of this study was to test a new bipolar electrode for electroporation consisting of a single minimally invasive electrode. The volume of ablated area is mainly influenced by applied voltage, while the diameter of the electrode had a less impact, making the goal of mini-...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563710/ https://www.ncbi.nlm.nih.gov/pubmed/32967343 http://dx.doi.org/10.3390/biology9090303 |
Sumario: | SIMPLE SUMMARY: The objective of this study was to test a new bipolar electrode for electroporation consisting of a single minimally invasive electrode. The volume of ablated area is mainly influenced by applied voltage, while the diameter of the electrode had a less impact, making the goal of mini-invasiveness possible. The minimally invasive bipolar electrode is able to treat an electroporated volume of about 10 mm in diameter by using a single-needle minimally invasive electrode. ABSTRACT: Objective: To test a new bipolar electrode for electroporation consisting of a single minimally invasive needle. Methods: A theoretical study was performed by using Comsol Multiphysics(®) software. The prototypes of electrode have been tested on potatoes and pigs, adopting an irreversible electroporation protocol. Different applied voltages and different geometries of bipolar electrode prototype have been evaluated. Results: Simulations and pre-clinical tests have shown that the volume of ablated area is mainly influenced by applied voltage, while the diameter of the electrode had a lesser impact, making the goal of minimal-invasiveness possible. The conductive pole’s length determined an increase of electroporated volume, while the insulated pole length inversely affects the electroporated volume size and shape; when the insulated pole length decreases, a more regular shape of the electric field is obtained. Moreover, the geometry of the electrode determined a different shape of the electroporated volume. A parenchymal damage in the liver of pigs due to irreversible electroporation protocol was observed. Conclusion: The minimally invasive bipolar electrode is able to treat an electroporated volume of about 10 mm in diameter by using a single-needle electrode. Moreover, the geometry and the electric characteristics can be selected to produce ellipsoidal ablation volumes. |
---|