Cargando…

Effect of Cellulose Solvents on the Characteristics of Cellulose/Fe(2)O(3) Hydrogel Microspheres as Enzyme Supports

Cellulose hydrogels are considered useful biocompatible and biodegradable materials. However, as few cellulose-dissolving solvents can be used to prepare cellulose hydrogel microspheres, the use of unmodified cellulose-based hydrogel microspheres for enzyme immobilization remains limited. Here, we p...

Descripción completa

Detalles Bibliográficos
Autores principales: Park, Saerom, Oh, Yujin, Jung, Dahun, Lee, Sang Hyun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563986/
https://www.ncbi.nlm.nih.gov/pubmed/32825173
http://dx.doi.org/10.3390/polym12091869
Descripción
Sumario:Cellulose hydrogels are considered useful biocompatible and biodegradable materials. However, as few cellulose-dissolving solvents can be used to prepare cellulose hydrogel microspheres, the use of unmodified cellulose-based hydrogel microspheres for enzyme immobilization remains limited. Here, we prepared cellulose/Fe(2)O(3) hydrogel microspheres as enzyme supports through sol-gel transition using a solvent-in-oil emulsion. Cellulose-dissolving solvents including 1-ethyl-3-methylimidazolium ([Emim][Ac]), an aqueous mixture of NaOH and thiourea, tetrabutylammonium hydroxide, and tetrabutylphosphonium hydroxide were used to prepare regular shaped cellulose/Fe(2)O(3) microspheres. The solvent affected microsphere characteristics like crystallinity, hydrophobicity, surface morphology, size distribution, and swelling properties. The immobilization efficiency of the microspheres for lipase was also significantly influenced by the type of cellulose solvent used. In particular, the lipase immobilized on cellulose/Fe(2)O(3) microspheres prepared using [Emim][Ac] showed the highest protein loading, and its specific activity was 3.1-fold higher than that of free lipase. The immobilized lipase could be simply recovered by a magnet and continuously reused.