Cargando…
Accurate Blood-Based Diagnostic Biosignatures for Alzheimer’s Disease via Automated Machine Learning
Alzheimer’s disease (AD) is the most common form of neurodegenerative dementia and its timely diagnosis remains a major challenge in biomarker discovery. In the present study, we analyzed publicly available high-throughput low-sample -omics datasets from studies in AD blood, by the AutoML technology...
Autores principales: | Karaglani, Makrina, Gourlia, Krystallia, Tsamardinos, Ioannis, Chatzaki, Ekaterini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7563988/ https://www.ncbi.nlm.nih.gov/pubmed/32962113 http://dx.doi.org/10.3390/jcm9093016 |
Ejemplares similares
-
Deciphering the Methylation Landscape in Breast Cancer: Diagnostic and Prognostic Biosignatures through Automated Machine Learning
por: Panagopoulou, Maria, et al.
Publicado: (2021) -
Liquid Biopsy in Type 2 Diabetes Mellitus Management: Building Specific Biosignatures via Machine Learning
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Tissue-Specific Methylation Biosignatures for Monitoring Diseases: An In Silico Approach
por: Karaglani, Makrina, et al.
Publicado: (2022) -
Automated machine learning optimizes and accelerates predictive modeling from COVID-19 high throughput datasets
por: Papoutsoglou, Georgios, et al.
Publicado: (2021) -
Learning biologically-interpretable latent representations for gene expression data: Pathway Activity Score Learning Algorithm
por: Karagiannaki, Ioulia, et al.
Publicado: (2022)