Cargando…

Proline-Rich Hypervariable Region of Hepatitis E Virus: Arranging the Disorder

The hepatitis E virus (HEV) hypervariable region (HVR) presents the highest divergence of the entire HEV genome. It is characteristically rich in proline, and so is also known as the “polyproline region” (PPR). HEV genotype 3 (HEV-3) exhibits different PPR lengths due to insertions, PPR and/or RNA-d...

Descripción completa

Detalles Bibliográficos
Autores principales: Muñoz-Chimeno, Milagros, Cenalmor, Alejandro, Garcia-Lugo, Maira Alejandra, Hernandez, Marta, Rodriguez-Lazaro, David, Avellon, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564002/
https://www.ncbi.nlm.nih.gov/pubmed/32942608
http://dx.doi.org/10.3390/microorganisms8091417
Descripción
Sumario:The hepatitis E virus (HEV) hypervariable region (HVR) presents the highest divergence of the entire HEV genome. It is characteristically rich in proline, and so is also known as the “polyproline region” (PPR). HEV genotype 3 (HEV-3) exhibits different PPR lengths due to insertions, PPR and/or RNA-dependent RNA polymerase (RdRp) duplications and deletions. A total of 723 PPR-HEV sequences were analyzed, of which 137 HEV-3 sequences were obtained from clinical specimens (from acute and chronic infection) by Sanger sequencing. Eight swine stool/liver samples were also analyzed. N- and C-terminal fragments were confirmed as being conserved, but they harbored differences between genotypes and were not proline-plentiful regions. The genuine PPR is the intermediate region between them. HEV-3 PPR contains a higher percentage (30.4%) of prolines than other genotypes. We describe for the first time: (1) the specific placement of HEV-3 PPR rearrangements in sites 1 to 14 of the PPR, noting that duplications are more frequently attached to sites 11 and 12 (AAs 74–79 and 113–118, respectively); (2) the cadence of repetitions follows a circular-like pattern of blocks A to J, with F, G, H, and I being the most frequent; (3) a previously unreported insertion homologous to apolipoprotein C1; and (4) the increase in frequency of potential N-glycosylation sites and differences in AAs composition related to duplications.