Cargando…

Ranking Series of Cancer-Related Gene Expression Data by Means of the Superposing Significant Interaction Rules Method

The Superposing Significant Interaction Rules (SSIR) method is a combinatorial procedure that deals with symbolic descriptors of samples. It is able to rank the series of samples when those items are classified into two classes. The method selects preferential descriptors and, with them, generates r...

Descripción completa

Detalles Bibliográficos
Autores principales: Besalú, Emili, De Julián-Ortiz, Jesus Vicente
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564041/
https://www.ncbi.nlm.nih.gov/pubmed/32911598
http://dx.doi.org/10.3390/biom10091293
Descripción
Sumario:The Superposing Significant Interaction Rules (SSIR) method is a combinatorial procedure that deals with symbolic descriptors of samples. It is able to rank the series of samples when those items are classified into two classes. The method selects preferential descriptors and, with them, generates rules that make up the rank by means of a simple voting procedure. Here, two application examples are provided. In both cases, binary or multilevel strings encoding gene expressions are considered as descriptors. It is shown how the SSIR procedure is useful for ranking the series of patient transcription data to diagnose two types of cancer (leukemia and prostate cancer) obtaining Area Under Receiver Operating Characteristic (AU-ROC) values of 0.95 (leukemia prediction) and 0.80–0.90 (prostate). The preferential selected descriptors here are specific gene expressions, and this is potentially useful to point to possible key genes.