Cargando…
Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate
The primary goal of this study was to investigate the monotonic tensile behavior of high-density polyethylene (HDPE) in its virgin, regrind, and laminated forms. HDPE is the most commonly used polymer in many industries. A variety of tensile tests were performed using plate-type specimens made of re...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564066/ https://www.ncbi.nlm.nih.gov/pubmed/32824990 http://dx.doi.org/10.3390/polym12091857 |
_version_ | 1783595628510576640 |
---|---|
author | Amjadi, Mohammad Fatemi, Ali |
author_facet | Amjadi, Mohammad Fatemi, Ali |
author_sort | Amjadi, Mohammad |
collection | PubMed |
description | The primary goal of this study was to investigate the monotonic tensile behavior of high-density polyethylene (HDPE) in its virgin, regrind, and laminated forms. HDPE is the most commonly used polymer in many industries. A variety of tensile tests were performed using plate-type specimens made of rectangular plaques. Several factors can affect the tensile behavior such as thickness, processing technique, temperature, and strain rate. Testing temperatures were chosen at −40, 23 (room temperature, RT), 53, and 82 °C to investigate temperature effect. Tensile properties, including elastic modulus, yield strength, and ultimate tensile strength, were obtained for all conditions. Tensile properties significantly reduced by increasing temperature while elastic modulus and ultimate tensile strength linearly increased at higher strain rates. A significant effect of thickness on tensile properties was observed for injection molding specimens at 23 °C, but no thickness effect was observed for compression molded specimens at either 23 or 82 °C. The aforementioned effects and discussion of their influence on tensile properties are presented in this paper. Polynomial relations for tensile properties, including elastic modulus, yield strength, and ultimate tensile strength, were developed as functions of temperature and strain rate. Such relations can be used to estimate tensile properties of HDPE as a function of temperature and/or strain rate for application in designing parts with this material. |
format | Online Article Text |
id | pubmed-7564066 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75640662020-10-29 Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate Amjadi, Mohammad Fatemi, Ali Polymers (Basel) Article The primary goal of this study was to investigate the monotonic tensile behavior of high-density polyethylene (HDPE) in its virgin, regrind, and laminated forms. HDPE is the most commonly used polymer in many industries. A variety of tensile tests were performed using plate-type specimens made of rectangular plaques. Several factors can affect the tensile behavior such as thickness, processing technique, temperature, and strain rate. Testing temperatures were chosen at −40, 23 (room temperature, RT), 53, and 82 °C to investigate temperature effect. Tensile properties, including elastic modulus, yield strength, and ultimate tensile strength, were obtained for all conditions. Tensile properties significantly reduced by increasing temperature while elastic modulus and ultimate tensile strength linearly increased at higher strain rates. A significant effect of thickness on tensile properties was observed for injection molding specimens at 23 °C, but no thickness effect was observed for compression molded specimens at either 23 or 82 °C. The aforementioned effects and discussion of their influence on tensile properties are presented in this paper. Polynomial relations for tensile properties, including elastic modulus, yield strength, and ultimate tensile strength, were developed as functions of temperature and strain rate. Such relations can be used to estimate tensile properties of HDPE as a function of temperature and/or strain rate for application in designing parts with this material. MDPI 2020-08-19 /pmc/articles/PMC7564066/ /pubmed/32824990 http://dx.doi.org/10.3390/polym12091857 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Amjadi, Mohammad Fatemi, Ali Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate |
title | Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate |
title_full | Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate |
title_fullStr | Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate |
title_full_unstemmed | Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate |
title_short | Tensile Behavior of High-Density Polyethylene Including the Effects of Processing Technique, Thickness, Temperature, and Strain Rate |
title_sort | tensile behavior of high-density polyethylene including the effects of processing technique, thickness, temperature, and strain rate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564066/ https://www.ncbi.nlm.nih.gov/pubmed/32824990 http://dx.doi.org/10.3390/polym12091857 |
work_keys_str_mv | AT amjadimohammad tensilebehaviorofhighdensitypolyethyleneincludingtheeffectsofprocessingtechniquethicknesstemperatureandstrainrate AT fatemiali tensilebehaviorofhighdensitypolyethyleneincludingtheeffectsofprocessingtechniquethicknesstemperatureandstrainrate |