Cargando…
A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping
Hepatitis B virus (HBV) is an enveloped virus that induces chronic liver disease. HBV has been classified into eight genotypes (A–H) according to its genome sequence by using Sanger sequencing or reverse hybridization. Sanger sequencing is often restricted to analyzing the S gene and is inaccurate f...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564258/ https://www.ncbi.nlm.nih.gov/pubmed/32932752 http://dx.doi.org/10.3390/microorganisms8091391 |
_version_ | 1783595673045696512 |
---|---|
author | Hebeler-Barbosa, Flavia Wolf, Ivan Rodrigo Valente, Guilherme Targino Mello, Francisco Campello do Amaral Lampe, Elisabeth Pardini, Maria Inês de Moura Campos Grotto, Rejane Maria Tommasini |
author_facet | Hebeler-Barbosa, Flavia Wolf, Ivan Rodrigo Valente, Guilherme Targino Mello, Francisco Campello do Amaral Lampe, Elisabeth Pardini, Maria Inês de Moura Campos Grotto, Rejane Maria Tommasini |
author_sort | Hebeler-Barbosa, Flavia |
collection | PubMed |
description | Hepatitis B virus (HBV) is an enveloped virus that induces chronic liver disease. HBV has been classified into eight genotypes (A–H) according to its genome sequence by using Sanger sequencing or reverse hybridization. Sanger sequencing is often restricted to analyzing the S gene and is inaccurate for detecting minority genetic variants, whereas reverse hybridization detects only known mutations. Next-generation sequencing (NGS) is a robust tool for clinical virology with different protocols available. The objective of this study was to develop a new method for the study of viral genetic polymorphisms or more accurate genotyping using genome amplification followed by NGS. Plasma obtained from five chronically infected HBV individuals was used for viral DNA isolation. HBV full-genome PCR amplification was the enrichment method for NGS. Primers were used to amplify all HBV genotypes in three overlapping amplicons, following a tagmentation step and Illumina NGS. For phylogenetic analysis, sequences were extracted from the HBVdb database. We were able to amplify a full HBV genome; further, NGS was shown to be a robust method and allowed better genotyping, mainly in patients carrying mixed genotypes, classified according to other techniques. This new method may be significant for whole genome analyses, including other viruses. |
format | Online Article Text |
id | pubmed-7564258 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75642582020-10-26 A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping Hebeler-Barbosa, Flavia Wolf, Ivan Rodrigo Valente, Guilherme Targino Mello, Francisco Campello do Amaral Lampe, Elisabeth Pardini, Maria Inês de Moura Campos Grotto, Rejane Maria Tommasini Microorganisms Article Hepatitis B virus (HBV) is an enveloped virus that induces chronic liver disease. HBV has been classified into eight genotypes (A–H) according to its genome sequence by using Sanger sequencing or reverse hybridization. Sanger sequencing is often restricted to analyzing the S gene and is inaccurate for detecting minority genetic variants, whereas reverse hybridization detects only known mutations. Next-generation sequencing (NGS) is a robust tool for clinical virology with different protocols available. The objective of this study was to develop a new method for the study of viral genetic polymorphisms or more accurate genotyping using genome amplification followed by NGS. Plasma obtained from five chronically infected HBV individuals was used for viral DNA isolation. HBV full-genome PCR amplification was the enrichment method for NGS. Primers were used to amplify all HBV genotypes in three overlapping amplicons, following a tagmentation step and Illumina NGS. For phylogenetic analysis, sequences were extracted from the HBVdb database. We were able to amplify a full HBV genome; further, NGS was shown to be a robust method and allowed better genotyping, mainly in patients carrying mixed genotypes, classified according to other techniques. This new method may be significant for whole genome analyses, including other viruses. MDPI 2020-09-11 /pmc/articles/PMC7564258/ /pubmed/32932752 http://dx.doi.org/10.3390/microorganisms8091391 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hebeler-Barbosa, Flavia Wolf, Ivan Rodrigo Valente, Guilherme Targino Mello, Francisco Campello do Amaral Lampe, Elisabeth Pardini, Maria Inês de Moura Campos Grotto, Rejane Maria Tommasini A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping |
title | A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping |
title_full | A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping |
title_fullStr | A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping |
title_full_unstemmed | A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping |
title_short | A New Method for Next-Generation Sequencing of the Full Hepatitis B Virus Genome from A Clinical Specimen: Impact for Virus Genotyping |
title_sort | new method for next-generation sequencing of the full hepatitis b virus genome from a clinical specimen: impact for virus genotyping |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564258/ https://www.ncbi.nlm.nih.gov/pubmed/32932752 http://dx.doi.org/10.3390/microorganisms8091391 |
work_keys_str_mv | AT hebelerbarbosaflavia anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT wolfivanrodrigo anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT valenteguilhermetargino anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT mellofranciscocampellodoamaral anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT lampeelisabeth anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT pardinimariainesdemouracampos anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT grottorejanemariatommasini anewmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT hebelerbarbosaflavia newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT wolfivanrodrigo newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT valenteguilhermetargino newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT mellofranciscocampellodoamaral newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT lampeelisabeth newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT pardinimariainesdemouracampos newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping AT grottorejanemariatommasini newmethodfornextgenerationsequencingofthefullhepatitisbvirusgenomefromaclinicalspecimenimpactforvirusgenotyping |