Cargando…
Electron–Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots
[Image: see text] Electron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interest...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564435/ https://www.ncbi.nlm.nih.gov/pubmed/32986437 http://dx.doi.org/10.1021/acs.nanolett.0c03227 |
_version_ | 1783595714172944384 |
---|---|
author | Banszerus, L. Rothstein, A. Fabian, T. Möller, S. Icking, E. Trellenkamp, S. Lentz, F. Neumaier, D. Watanabe, K. Taniguchi, T. Libisch, F. Volk, C. Stampfer, C. |
author_facet | Banszerus, L. Rothstein, A. Fabian, T. Möller, S. Icking, E. Trellenkamp, S. Lentz, F. Neumaier, D. Watanabe, K. Taniguchi, T. Libisch, F. Volk, C. Stampfer, C. |
author_sort | Banszerus, L. |
collection | PubMed |
description | [Image: see text] Electron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here, we show measurements of the electron–hole crossover in a bilayer graphene QD, demonstrating opposite signs of the magnetic moments associated with the Berry curvature. Using three layers of top gates, we independently control the tunneling barriers while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field-controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3 and 5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electrons and holes at moderate B-fields. Our measurements agree well with tight-binding calculations for our device. |
format | Online Article Text |
id | pubmed-7564435 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75644352020-10-19 Electron–Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots Banszerus, L. Rothstein, A. Fabian, T. Möller, S. Icking, E. Trellenkamp, S. Lentz, F. Neumaier, D. Watanabe, K. Taniguchi, T. Libisch, F. Volk, C. Stampfer, C. Nano Lett [Image: see text] Electron and hole Bloch states in bilayer graphene exhibit topological orbital magnetic moments with opposite signs, which allows for tunable valley-polarization in an out-of-plane magnetic field. This property makes electron and hole quantum dots (QDs) in bilayer graphene interesting for valley and spin-valley qubits. Here, we show measurements of the electron–hole crossover in a bilayer graphene QD, demonstrating opposite signs of the magnetic moments associated with the Berry curvature. Using three layers of top gates, we independently control the tunneling barriers while tuning the occupation from the few-hole regime to the few-electron regime, crossing the displacement-field-controlled band gap. The band gap is around 25 meV, while the charging energies of the electron and hole dots are between 3 and 5 meV. The extracted valley g-factor is around 17 and leads to opposite valley polarization for electrons and holes at moderate B-fields. Our measurements agree well with tight-binding calculations for our device. American Chemical Society 2020-09-28 2020-10-14 /pmc/articles/PMC7564435/ /pubmed/32986437 http://dx.doi.org/10.1021/acs.nanolett.0c03227 Text en This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Banszerus, L. Rothstein, A. Fabian, T. Möller, S. Icking, E. Trellenkamp, S. Lentz, F. Neumaier, D. Watanabe, K. Taniguchi, T. Libisch, F. Volk, C. Stampfer, C. Electron–Hole Crossover in Gate-Controlled Bilayer Graphene Quantum Dots |
title | Electron–Hole Crossover in Gate-Controlled
Bilayer Graphene Quantum Dots |
title_full | Electron–Hole Crossover in Gate-Controlled
Bilayer Graphene Quantum Dots |
title_fullStr | Electron–Hole Crossover in Gate-Controlled
Bilayer Graphene Quantum Dots |
title_full_unstemmed | Electron–Hole Crossover in Gate-Controlled
Bilayer Graphene Quantum Dots |
title_short | Electron–Hole Crossover in Gate-Controlled
Bilayer Graphene Quantum Dots |
title_sort | electron–hole crossover in gate-controlled
bilayer graphene quantum dots |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564435/ https://www.ncbi.nlm.nih.gov/pubmed/32986437 http://dx.doi.org/10.1021/acs.nanolett.0c03227 |
work_keys_str_mv | AT banszerusl electronholecrossoveringatecontrolledbilayergraphenequantumdots AT rothsteina electronholecrossoveringatecontrolledbilayergraphenequantumdots AT fabiant electronholecrossoveringatecontrolledbilayergraphenequantumdots AT mollers electronholecrossoveringatecontrolledbilayergraphenequantumdots AT ickinge electronholecrossoveringatecontrolledbilayergraphenequantumdots AT trellenkamps electronholecrossoveringatecontrolledbilayergraphenequantumdots AT lentzf electronholecrossoveringatecontrolledbilayergraphenequantumdots AT neumaierd electronholecrossoveringatecontrolledbilayergraphenequantumdots AT watanabek electronholecrossoveringatecontrolledbilayergraphenequantumdots AT taniguchit electronholecrossoveringatecontrolledbilayergraphenequantumdots AT libischf electronholecrossoveringatecontrolledbilayergraphenequantumdots AT volkc electronholecrossoveringatecontrolledbilayergraphenequantumdots AT stampferc electronholecrossoveringatecontrolledbilayergraphenequantumdots |