Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots

[Image: see text] We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T(1) as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation...

Descripción completa

Detalles Bibliográficos
Autores principales: Lawrie, W. I. L., Hendrickx, N. W., van Riggelen, F., Russ, M., Petit, L., Sammak, A., Scappucci, G., Veldhorst, M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2020
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564448/
https://www.ncbi.nlm.nih.gov/pubmed/32833455
http://dx.doi.org/10.1021/acs.nanolett.0c02589
_version_ 1783595717245272064
author Lawrie, W. I. L.
Hendrickx, N. W.
van Riggelen, F.
Russ, M.
Petit, L.
Sammak, A.
Scappucci, G.
Veldhorst, M.
author_facet Lawrie, W. I. L.
Hendrickx, N. W.
van Riggelen, F.
Russ, M.
Petit, L.
Sammak, A.
Scappucci, G.
Veldhorst, M.
author_sort Lawrie, W. I. L.
collection PubMed
description [Image: see text] We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T(1) as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation times for hole quantum dots. Furthermore, we investigate qubit addressability and electric field sensitivity by measuring resonance frequency dependence of each qubit on gate voltages. We can tune the resonance frequency over a large range for both single and multihole qubits, while simultaneously finding that the resonance frequencies are only weakly dependent on neighboring gates. In particular, the five-hole qubit resonance frequency is more than 20 times as sensitive to its corresponding plunger gate. Excellent individual qubit tunability and long spin relaxation times make holes in germanium promising for addressable and high-fidelity spin qubits in dense two-dimensional quantum dot arrays for large-scale quantum information.
format Online
Article
Text
id pubmed-7564448
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-75644482020-10-19 Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots Lawrie, W. I. L. Hendrickx, N. W. van Riggelen, F. Russ, M. Petit, L. Sammak, A. Scappucci, G. Veldhorst, M. Nano Lett [Image: see text] We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T(1) as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation times for hole quantum dots. Furthermore, we investigate qubit addressability and electric field sensitivity by measuring resonance frequency dependence of each qubit on gate voltages. We can tune the resonance frequency over a large range for both single and multihole qubits, while simultaneously finding that the resonance frequencies are only weakly dependent on neighboring gates. In particular, the five-hole qubit resonance frequency is more than 20 times as sensitive to its corresponding plunger gate. Excellent individual qubit tunability and long spin relaxation times make holes in germanium promising for addressable and high-fidelity spin qubits in dense two-dimensional quantum dot arrays for large-scale quantum information. American Chemical Society 2020-08-24 2020-10-14 /pmc/articles/PMC7564448/ /pubmed/32833455 http://dx.doi.org/10.1021/acs.nanolett.0c02589 Text en This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes.
spellingShingle Lawrie, W. I. L.
Hendrickx, N. W.
van Riggelen, F.
Russ, M.
Petit, L.
Sammak, A.
Scappucci, G.
Veldhorst, M.
Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
title Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
title_full Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
title_fullStr Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
title_full_unstemmed Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
title_short Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
title_sort spin relaxation benchmarks and individual qubit addressability for holes in quantum dots
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564448/
https://www.ncbi.nlm.nih.gov/pubmed/32833455
http://dx.doi.org/10.1021/acs.nanolett.0c02589
work_keys_str_mv AT lawriewil spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT hendrickxnw spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT vanriggelenf spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT russm spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT petitl spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT sammaka spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT scappuccig spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots
AT veldhorstm spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots