Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots
[Image: see text] We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T(1) as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564448/ https://www.ncbi.nlm.nih.gov/pubmed/32833455 http://dx.doi.org/10.1021/acs.nanolett.0c02589 |
_version_ | 1783595717245272064 |
---|---|
author | Lawrie, W. I. L. Hendrickx, N. W. van Riggelen, F. Russ, M. Petit, L. Sammak, A. Scappucci, G. Veldhorst, M. |
author_facet | Lawrie, W. I. L. Hendrickx, N. W. van Riggelen, F. Russ, M. Petit, L. Sammak, A. Scappucci, G. Veldhorst, M. |
author_sort | Lawrie, W. I. L. |
collection | PubMed |
description | [Image: see text] We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T(1) as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation times for hole quantum dots. Furthermore, we investigate qubit addressability and electric field sensitivity by measuring resonance frequency dependence of each qubit on gate voltages. We can tune the resonance frequency over a large range for both single and multihole qubits, while simultaneously finding that the resonance frequencies are only weakly dependent on neighboring gates. In particular, the five-hole qubit resonance frequency is more than 20 times as sensitive to its corresponding plunger gate. Excellent individual qubit tunability and long spin relaxation times make holes in germanium promising for addressable and high-fidelity spin qubits in dense two-dimensional quantum dot arrays for large-scale quantum information. |
format | Online Article Text |
id | pubmed-7564448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-75644482020-10-19 Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots Lawrie, W. I. L. Hendrickx, N. W. van Riggelen, F. Russ, M. Petit, L. Sammak, A. Scappucci, G. Veldhorst, M. Nano Lett [Image: see text] We investigate hole spin relaxation in the single- and multihole regime in a 2 × 2 germanium quantum dot array. We find spin relaxation times T(1) as high as 32 and 1.2 ms for quantum dots with single- and five-hole occupations, respectively, setting benchmarks for spin relaxation times for hole quantum dots. Furthermore, we investigate qubit addressability and electric field sensitivity by measuring resonance frequency dependence of each qubit on gate voltages. We can tune the resonance frequency over a large range for both single and multihole qubits, while simultaneously finding that the resonance frequencies are only weakly dependent on neighboring gates. In particular, the five-hole qubit resonance frequency is more than 20 times as sensitive to its corresponding plunger gate. Excellent individual qubit tunability and long spin relaxation times make holes in germanium promising for addressable and high-fidelity spin qubits in dense two-dimensional quantum dot arrays for large-scale quantum information. American Chemical Society 2020-08-24 2020-10-14 /pmc/articles/PMC7564448/ /pubmed/32833455 http://dx.doi.org/10.1021/acs.nanolett.0c02589 Text en This is an open access article published under a Creative Commons Non-Commercial No Derivative Works (CC-BY-NC-ND) Attribution License (http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html) , which permits copying and redistribution of the article, and creation of adaptations, all for non-commercial purposes. |
spellingShingle | Lawrie, W. I. L. Hendrickx, N. W. van Riggelen, F. Russ, M. Petit, L. Sammak, A. Scappucci, G. Veldhorst, M. Spin Relaxation Benchmarks and Individual Qubit Addressability for Holes in Quantum Dots |
title | Spin Relaxation Benchmarks and Individual Qubit Addressability
for Holes in Quantum Dots |
title_full | Spin Relaxation Benchmarks and Individual Qubit Addressability
for Holes in Quantum Dots |
title_fullStr | Spin Relaxation Benchmarks and Individual Qubit Addressability
for Holes in Quantum Dots |
title_full_unstemmed | Spin Relaxation Benchmarks and Individual Qubit Addressability
for Holes in Quantum Dots |
title_short | Spin Relaxation Benchmarks and Individual Qubit Addressability
for Holes in Quantum Dots |
title_sort | spin relaxation benchmarks and individual qubit addressability
for holes in quantum dots |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564448/ https://www.ncbi.nlm.nih.gov/pubmed/32833455 http://dx.doi.org/10.1021/acs.nanolett.0c02589 |
work_keys_str_mv | AT lawriewil spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT hendrickxnw spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT vanriggelenf spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT russm spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT petitl spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT sammaka spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT scappuccig spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots AT veldhorstm spinrelaxationbenchmarksandindividualqubitaddressabilityforholesinquantumdots |