Cargando…

Serum BDNF’s Role as a Biomarker for Motor Training in the Context of AR-Based Rehabilitation after Ischemic Stroke

Background: brain-derived neurotrophic factor (BDNF) may play a role during neurorehabilitation following ischemic stroke. This study aimed to elucidate the possible role of BDNF during early recovery from ischemic stroke assisted by motor training. Methods: fifty patients were included after acute...

Descripción completa

Detalles Bibliográficos
Autores principales: Koroleva, Ekaterina S., Tolmachev, Ivan V., Alifirova, Valentina M., Boiko, Anastasiia S., Levchuk, Lyudmila A., Loonen, Anton J. M., Ivanova, Svetlana A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564457/
https://www.ncbi.nlm.nih.gov/pubmed/32916851
http://dx.doi.org/10.3390/brainsci10090623
Descripción
Sumario:Background: brain-derived neurotrophic factor (BDNF) may play a role during neurorehabilitation following ischemic stroke. This study aimed to elucidate the possible role of BDNF during early recovery from ischemic stroke assisted by motor training. Methods: fifty patients were included after acute recovery from ischemic stroke: 21 first received classical rehabilitation followed by ‘motor rehabilitation using motion sensors and augmented reality’ (AR-rehabilitation), 14 only received AR-rehabilitation, and 15 were only observed. Serum BDNF levels were measured on the first day of stroke, on the 14th day, before AR-based rehabilitation (median, 45th day), and after the AR-based rehabilitation (median, 82nd day). Motor impairment was quantified clinically using the Fugl–Meyer scale (FMA); functional disability and activities of daily living (ADL) were measured using the Modified Rankin Scale (mRS). For comparison, serum BDNF was measured in 50 healthy individuals. Results: BDNF levels were found to significantly increase during the phase with AR-based rehabilitation. The pattern of the sequentially measured BDNF levels was similar in the treated patients. Untreated patients had significantly lower BDNF levels at the endpoint. Conclusions: the fluctuations of BDNF levels are not consistently related to motor improvement but seem to react to active treatment. Without active rehabilitation treatment, BDNF tends to decrease.