Cargando…
Phosphorus Feast and Famine in Cyanobacteria: Is Luxury Uptake of the Nutrient Just a Consequence of Acclimation to Its Shortage?
To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)—taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564538/ https://www.ncbi.nlm.nih.gov/pubmed/32825634 http://dx.doi.org/10.3390/cells9091933 |
Sumario: | To cope with fluctuating phosphorus (P) availability, cyanobacteria developed diverse acclimations, including luxury P uptake (LPU)—taking up P in excess of the current metabolic demand. LPU is underexplored, despite its importance for nutrient-driven rearrangements in aquatic ecosystems. We studied the LPU after the refeeding of P-deprived cyanobacterium Nostoc sp. PCC 7118 with inorganic phosphate (P(i)), including the kinetics of P(i) uptake, turnover of polyphosphate, cell ultrastructure, and gene expression. The P-deprived cells deployed acclimations to P shortage (reduction of photosynthetic apparatus and mobilization of cell P reserves). The P-starved cells capable of LPU exhibited a biphasic kinetic of the P(i) uptake and polyphosphate formation. The first (fast) phase (1–2 h after P(i) refeeding) occurred independently of light and temperature. It was accompanied by a transient accumulation of polyphosphate, still upregulated genes encoding high-affinity P(i) transporters, and an ATP-dependent polyphosphate kinase. During the second (slow) phase, recovery from P starvation was accompanied by the downregulation of these genes. Our study revealed no specific acclimation to ample P conditions in Nostoc sp. PCC 7118. We conclude that the observed LPU phenomenon does not likely result from the activation of a mechanism specific for ample P conditions. On the contrary, it stems from slow disengagement of the low-P responses after the abrupt transition from low-P to ample P conditions. |
---|