Cargando…

Improved Energy Storage Performance of All-Organic Composite Dielectric via Constructing Sandwich Structure

Improving the energy storage density of dielectrics without sacrificing charge-discharge energy storage efficiency and reliability is crucial to the performance improvement of modern electrical and electronic systems, but traditional methods of doping high-dielectric ceramics cannot achieve high ene...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Mengjia, Zhang, Tiandong, Song, Chunhui, Zhang, Changhai, Zhang, Yue, Feng, Yu, Chi, Qingguo, Chen, Qingguo, Lei, Qingquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564590/
https://www.ncbi.nlm.nih.gov/pubmed/32877993
http://dx.doi.org/10.3390/polym12091972
Descripción
Sumario:Improving the energy storage density of dielectrics without sacrificing charge-discharge energy storage efficiency and reliability is crucial to the performance improvement of modern electrical and electronic systems, but traditional methods of doping high-dielectric ceramics cannot achieve high energy storage densities without sacrificing reliability and storage efficiency. Here, an all-organic energy storage dielectric composed of ferroelectric and linear polymer with a sandwich structure is proposed and successfully prepared by the electrostatic spinning method. Additionally, the effect of the ferroelectric/linear volume ratio on the dielectric properties, breakdown, and energy storage is systematically studied. The results show that the structure has good energy storage characteristics with a high energy storage density (9.7 J/cm(3)) and a high energy storage efficiency (78%). In addition, the energy storage density of the composite dielectric under high energy storage efficiency (90%) is effectively improved (25%). This result provides theoretical analysis and experience for the preparation of multilayer energy storage dielectrics which will promote the development and application of energy storage dielectrics.