Cargando…

High-Throughput Identification of the Rhodnius prolixus Midgut Proteome Unravels a Sophisticated Hematophagic Machinery

Chagas disease is one of the most common parasitic infections in Latin America, which is transmitted by hematophagous triatomine bugs, of which Rhodnius prolixus is the vector prototype for the study of this disease. The protozoan parasite Trypanosoma cruzi, the etiologic agent of this disease, is t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ouali, Radouane, Valentim de Brito, Karen Caroline, Salmon, Didier, Bousbata, Sabrina
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564601/
https://www.ncbi.nlm.nih.gov/pubmed/32722125
http://dx.doi.org/10.3390/proteomes8030016
Descripción
Sumario:Chagas disease is one of the most common parasitic infections in Latin America, which is transmitted by hematophagous triatomine bugs, of which Rhodnius prolixus is the vector prototype for the study of this disease. The protozoan parasite Trypanosoma cruzi, the etiologic agent of this disease, is transmitted by the vector to humans through the bite wound or mucosa. The passage of the parasite through the digestive tract of its vector constitutes a key step in its developmental cycle. Herewith, by a using high-throughput proteomic tool in order to characterize the midgut proteome of R. prolixus, we describe a set of functional groups of proteins, as well as the biological processes in which they are involved. This is the first proteomic analysis showing an elaborated hematophagy machinery involved in the digestion of blood, among which, several families of proteases have been characterized. The evaluation of the activity of cathepsin D proteases in the anterior part of the digestive tract of the insect suggested the existence of a proteolytic activity within this compartment, suggesting that digestion occurs early in this compartment. Moreover, several heat shock proteins, blood clotting inhibitors, and a powerful antioxidant enzyme machinery against reactive oxygen species (ROS) and cell detoxification have been identified. Highlighting the complexity and importance of the digestive physiology of insects could be a starting point for the selection of new targets for innovative control strategies of Chagas disease.