Cargando…
Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization
This study successfully fabricated BPA-imprinted poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) (poly(4-VP-co-EGDMA)) quartz crystal microbalance (MIP-QCM) sensors on a silica skeleton surface and gold pinholes of silica inverse opal through surface-initiated atom transfer radical polymeriz...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564607/ https://www.ncbi.nlm.nih.gov/pubmed/32842670 http://dx.doi.org/10.3390/polym12091892 |
_version_ | 1783595753201991680 |
---|---|
author | Yang, Jin Chul Park, Jinyoung |
author_facet | Yang, Jin Chul Park, Jinyoung |
author_sort | Yang, Jin Chul |
collection | PubMed |
description | This study successfully fabricated BPA-imprinted poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) (poly(4-VP-co-EGDMA)) quartz crystal microbalance (MIP-QCM) sensors on a silica skeleton surface and gold pinholes of silica inverse opal through surface-initiated atom transfer radical polymerization (SI-ATRP). The sensing features of the two MIP films on the structured silica surface and nano-scale local gold surface were investigated by measuring the resonant frequency change (∆f) in QCM sensors. The ∆f values for the p-MIP (MIP on gold pinholes) and s-MIP films (MIP on silica skeleton surface) were obtained with the ∆f value of −199 ± 4.9 Hz and −376 ± 19.1 Hz, respectively, whereas for p-/s-NIP films, the ∆f values were observed to be −115 ± 19.2 Hz and −174 ± 5.8 Hz by the influence of non-specific adsorption on the surface of the films. Additionally, the imprinting factor (IF) appeared to be 1.72 for p-MIP film and 2.15 for s-MIP film, and the limits of quantitation (LOQ) and detection (LOD) were 54.924 and 18.125 nM (p-MIP film) and 38.419 and 12.678 nM (s-MIP film), respectively. Using the Freundlich isotherm model, the binding affinity of the BPA-imprinted films was evaluated. This was measured in an aqueous solution of BPA whose concentration ranged between 45 and 225 nM. It was found that the p-MIP film (m = 0.39) was relatively more heterogeneous than the s-MIP film (m = 0.33), both of which were obtained from the slope of the linear regressions. Finally, the selectivity of the MIP-QCM sensors for BPA detection was determined by measuring the effect of other analogous chemicals, such as bisphenol F (BPF), bisphenol AP (BPAP), and bisphenol B (BPB), in aqueous solutions. The selectivity coefficients (k*) of the two MIP films had ~1.9 for the p-MIP and ~2.3 for the s-MIP films, respectively. The results reveal that, with respect to signal amplification of the QCM sensors, the s-MIP film has better sensing features and faster detection responses than the p-MIP film. |
format | Online Article Text |
id | pubmed-7564607 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75646072020-10-29 Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization Yang, Jin Chul Park, Jinyoung Polymers (Basel) Communication This study successfully fabricated BPA-imprinted poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) (poly(4-VP-co-EGDMA)) quartz crystal microbalance (MIP-QCM) sensors on a silica skeleton surface and gold pinholes of silica inverse opal through surface-initiated atom transfer radical polymerization (SI-ATRP). The sensing features of the two MIP films on the structured silica surface and nano-scale local gold surface were investigated by measuring the resonant frequency change (∆f) in QCM sensors. The ∆f values for the p-MIP (MIP on gold pinholes) and s-MIP films (MIP on silica skeleton surface) were obtained with the ∆f value of −199 ± 4.9 Hz and −376 ± 19.1 Hz, respectively, whereas for p-/s-NIP films, the ∆f values were observed to be −115 ± 19.2 Hz and −174 ± 5.8 Hz by the influence of non-specific adsorption on the surface of the films. Additionally, the imprinting factor (IF) appeared to be 1.72 for p-MIP film and 2.15 for s-MIP film, and the limits of quantitation (LOQ) and detection (LOD) were 54.924 and 18.125 nM (p-MIP film) and 38.419 and 12.678 nM (s-MIP film), respectively. Using the Freundlich isotherm model, the binding affinity of the BPA-imprinted films was evaluated. This was measured in an aqueous solution of BPA whose concentration ranged between 45 and 225 nM. It was found that the p-MIP film (m = 0.39) was relatively more heterogeneous than the s-MIP film (m = 0.33), both of which were obtained from the slope of the linear regressions. Finally, the selectivity of the MIP-QCM sensors for BPA detection was determined by measuring the effect of other analogous chemicals, such as bisphenol F (BPF), bisphenol AP (BPAP), and bisphenol B (BPB), in aqueous solutions. The selectivity coefficients (k*) of the two MIP films had ~1.9 for the p-MIP and ~2.3 for the s-MIP films, respectively. The results reveal that, with respect to signal amplification of the QCM sensors, the s-MIP film has better sensing features and faster detection responses than the p-MIP film. MDPI 2020-08-22 /pmc/articles/PMC7564607/ /pubmed/32842670 http://dx.doi.org/10.3390/polym12091892 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Communication Yang, Jin Chul Park, Jinyoung Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization |
title | Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization |
title_full | Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization |
title_fullStr | Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization |
title_full_unstemmed | Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization |
title_short | Molecular Imprinting of Bisphenol A on Silica Skeleton and Gold Pinhole Surfaces in 2D Colloidal Inverse Opal through Thermal Graft Copolymerization |
title_sort | molecular imprinting of bisphenol a on silica skeleton and gold pinhole surfaces in 2d colloidal inverse opal through thermal graft copolymerization |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564607/ https://www.ncbi.nlm.nih.gov/pubmed/32842670 http://dx.doi.org/10.3390/polym12091892 |
work_keys_str_mv | AT yangjinchul molecularimprintingofbisphenolaonsilicaskeletonandgoldpinholesurfacesin2dcolloidalinverseopalthroughthermalgraftcopolymerization AT parkjinyoung molecularimprintingofbisphenolaonsilicaskeletonandgoldpinholesurfacesin2dcolloidalinverseopalthroughthermalgraftcopolymerization |