Cargando…

Anti-Glucosylsphingosine Autoimmunity, JAK2V617F-Dependent Interleukin-1β and JAK2V617F-Independent Cytokines in Myeloproliferative Neoplasms

SIMPLE SUMMARY: Inflammation plays a major role in myeloproliferative neoplasms (MPNs) as regulator of malignant cell growth and mediator of clinical symptoms. Yet chronic inflammation may also be an early event that facilitates the development of MPNs. Here we analysed 42 inflammatory cytokines and...

Descripción completa

Detalles Bibliográficos
Autores principales: Allain-Maillet, Sophie, Bosseboeuf, Adrien, Mennesson, Nicolas, Bostoën, Mégane, Dufeu, Laura, Choi, Eun Ho, Cleyrat, Cédric, Mansier, Olivier, Lippert, Eric, Le Bris, Yannick, Gombert, Jean-Marc, Girodon, François, Pettazzoni, Magali, Bigot-Corbel, Edith, Hermouet, Sylvie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564615/
https://www.ncbi.nlm.nih.gov/pubmed/32872203
http://dx.doi.org/10.3390/cancers12092446
Descripción
Sumario:SIMPLE SUMMARY: Inflammation plays a major role in myeloproliferative neoplasms (MPNs) as regulator of malignant cell growth and mediator of clinical symptoms. Yet chronic inflammation may also be an early event that facilitates the development of MPNs. Here we analysed 42 inflammatory cytokines and report that in patients as well as in UT-7 cell lines, interleukin-1β and interferon-induced protein 10 (IP-10) were the main inflammatory molecules found to be induced by JAK2V617F, the most frequent driving mutation in MPNs. All other inflammatory cytokines were not linked to JAK2V617F, which implies that inflammation likely precedes MPN development at least in subsets of MPN patients. Consistently, a possible cause of early, chronic inflammation may be auto-immunity against glucolipids: we report that 20% of MPN patients presented with anti-glucosylsphingoside auto-antibodies. Since existing treatments can reduce glucosylsphingoside, this lysosphingolipid could become a new therapeutic target for subsets of MPN patients, in addition to JAK2V617F and inflammation. ABSTRACT: Inflammatory cytokines play a major role in myeloproliferative neoplasms (MPNs) as regulators of the MPN clone and as mediators of clinical symptoms and complications. Firstly, we investigated the effect of JAK2V617F on 42 molecules linked to inflammation. For JAK2V617F-mutated patients, the JAK2V617F allele burden (%JAK2V617F) correlated with the levels of IL-1β, IL-1Rα, IP-10 and leptin in polycythemia vera (PV), and with IL-33 in ET; for all other molecules, no correlation was found. Cytokine production was also studied in the human megakaryocytic cell line UT-7. Wild-type UT-7 cells secreted 27/42 cytokines measured. UT-7 clones expressing 50% or 75% JAK2V617F were generated, in which the production of IL-1β, IP-10 and RANTES was increased; other cytokines were not affected. Secondly, we searched for causes of chronic inflammation in MPNs other than driver mutations. Since antigen-driven selection is increasingly implicated in the pathogenesis of blood malignancies, we investigated whether proinflammatory glucosylsphingosine (GlcSph) may play a role in MPNs. We report that 20% (15/75) of MPN patients presented with anti-GlcSph IgGs, distinguished by elevated levels of 11 cytokines. In summary, only IL-1β and IP-10 were linked to JAK2V617F both in patients and in UT-7 cells; other inflammation-linked cytokines in excess in MPNs were not. For subsets of MPN patients, a possible cause of inflammation may be auto-immunity against glucolipids.