Cargando…
Machine Learning-Based Predictive Modeling of Postpartum Depression
Postpartum depression is a serious health issue beyond the mental health problems that affect mothers after childbirth. There are no predictive tools available to screen postpartum depression that also allow early interventions. We aimed to develop predictive models for postpartum depression using m...
Autores principales: | Shin, Dayeon, Lee, Kyung Ju, Adeluwa, Temidayo, Hur, Junguk |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564708/ https://www.ncbi.nlm.nih.gov/pubmed/32911726 http://dx.doi.org/10.3390/jcm9092899 |
Ejemplares similares
-
Predicting Drug-Induced Liver Injury Using Machine Learning on a Diverse Set of Predictors
por: Adeluwa, Temidayo, et al.
Publicado: (2021) -
Predictability of Macrosomic Birth based on Maternal Factors and Fetal Aneuploidy Screening Biochemical Markers in Hyperglycemic Mothers
por: Hur, Junguk, et al.
Publicado: (2021) -
Predicting women with depressive symptoms postpartum with machine learning methods
por: Andersson, Sam, et al.
Publicado: (2021) -
Prevalences and Management of Diabetes and Pre-diabetes among Korean Teenagers and Young Adults: Results from the Korea National Health and Nutrition Examination Survey 2005–2014
por: Cho, Eun-Hee, et al.
Publicado: (2017) -
Association of Sleep Duration and Obesity According to Gender and Age in Korean Adults: Results from the Korea National Health and Nutrition Examination Survey 2007–2015
por: Cho, Keun-Hyok, et al.
Publicado: (2018)