Cargando…
Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation
Representation invariance plays a significant role in the performance of deep convolutional neural networks (CNNs) and human visual information processing in various complicated image-based tasks. However, there has been abounding confusion concerning the representation invariance mechanisms of the...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564968/ https://www.ncbi.nlm.nih.gov/pubmed/32887405 http://dx.doi.org/10.3390/brainsci10090602 |
_version_ | 1783595833212534784 |
---|---|
author | Cui, Yibo Zhang, Chi Qiao, Kai Wang, Linyuan Yan, Bin Tong, Li |
author_facet | Cui, Yibo Zhang, Chi Qiao, Kai Wang, Linyuan Yan, Bin Tong, Li |
author_sort | Cui, Yibo |
collection | PubMed |
description | Representation invariance plays a significant role in the performance of deep convolutional neural networks (CNNs) and human visual information processing in various complicated image-based tasks. However, there has been abounding confusion concerning the representation invariance mechanisms of the two sophisticated systems. To investigate their relationship under common conditions, we proposed a representation invariance analysis approach based on data augmentation technology. Firstly, the original image library was expanded by data augmentation. The representation invariances of CNNs and the ventral visual stream were then studied by comparing the similarities of the corresponding layer features of CNNs and the prediction performance of visual encoding models based on functional magnetic resonance imaging (fMRI) before and after data augmentation. Our experimental results suggest that the architecture of CNNs, combinations of convolutional and fully-connected layers, developed representation invariance of CNNs. Remarkably, we found representation invariance belongs to all successive stages of the ventral visual stream. Hence, the internal correlation between CNNs and the human visual system in representation invariance was revealed. Our study promotes the advancement of invariant representation of computer vision and deeper comprehension of the representation invariance mechanism of human visual information processing. |
format | Online Article Text |
id | pubmed-7564968 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75649682020-10-26 Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation Cui, Yibo Zhang, Chi Qiao, Kai Wang, Linyuan Yan, Bin Tong, Li Brain Sci Article Representation invariance plays a significant role in the performance of deep convolutional neural networks (CNNs) and human visual information processing in various complicated image-based tasks. However, there has been abounding confusion concerning the representation invariance mechanisms of the two sophisticated systems. To investigate their relationship under common conditions, we proposed a representation invariance analysis approach based on data augmentation technology. Firstly, the original image library was expanded by data augmentation. The representation invariances of CNNs and the ventral visual stream were then studied by comparing the similarities of the corresponding layer features of CNNs and the prediction performance of visual encoding models based on functional magnetic resonance imaging (fMRI) before and after data augmentation. Our experimental results suggest that the architecture of CNNs, combinations of convolutional and fully-connected layers, developed representation invariance of CNNs. Remarkably, we found representation invariance belongs to all successive stages of the ventral visual stream. Hence, the internal correlation between CNNs and the human visual system in representation invariance was revealed. Our study promotes the advancement of invariant representation of computer vision and deeper comprehension of the representation invariance mechanism of human visual information processing. MDPI 2020-09-02 /pmc/articles/PMC7564968/ /pubmed/32887405 http://dx.doi.org/10.3390/brainsci10090602 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cui, Yibo Zhang, Chi Qiao, Kai Wang, Linyuan Yan, Bin Tong, Li Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation |
title | Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation |
title_full | Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation |
title_fullStr | Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation |
title_full_unstemmed | Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation |
title_short | Study on Representation Invariances of CNNs and Human Visual Information Processing Based on Data Augmentation |
title_sort | study on representation invariances of cnns and human visual information processing based on data augmentation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7564968/ https://www.ncbi.nlm.nih.gov/pubmed/32887405 http://dx.doi.org/10.3390/brainsci10090602 |
work_keys_str_mv | AT cuiyibo studyonrepresentationinvariancesofcnnsandhumanvisualinformationprocessingbasedondataaugmentation AT zhangchi studyonrepresentationinvariancesofcnnsandhumanvisualinformationprocessingbasedondataaugmentation AT qiaokai studyonrepresentationinvariancesofcnnsandhumanvisualinformationprocessingbasedondataaugmentation AT wanglinyuan studyonrepresentationinvariancesofcnnsandhumanvisualinformationprocessingbasedondataaugmentation AT yanbin studyonrepresentationinvariancesofcnnsandhumanvisualinformationprocessingbasedondataaugmentation AT tongli studyonrepresentationinvariancesofcnnsandhumanvisualinformationprocessingbasedondataaugmentation |