Cargando…

Evaluation of Insertion Energy as Novel Parameter for Dental Implant Stability

Insertion energy has been advocated as a novel measure for primary implant stability, but the effect of implant length, diameter, or surgical protocol remains unclear. Twenty implants from one specific bone level implant system were placed in layered polyurethane foam measuring maximum insertion tor...

Descripción completa

Detalles Bibliográficos
Autores principales: Grobecker-Karl, Tanja, Dickinson, Anthony, Heckmann, Siegfried, Karl, Matthias, Steiner, Constanze
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565125/
https://www.ncbi.nlm.nih.gov/pubmed/32942697
http://dx.doi.org/10.3390/jcm9092977
Descripción
Sumario:Insertion energy has been advocated as a novel measure for primary implant stability, but the effect of implant length, diameter, or surgical protocol remains unclear. Twenty implants from one specific bone level implant system were placed in layered polyurethane foam measuring maximum insertion torque, torque–time curves, and primary stability using resonance frequency analysis (RFA). Insertion energy was calculated as area under torque–time curve applying the trapezoidal formula. Statistical analysis was based on analysis of variance, Tukey honest differences tests and Pearson’s product moment correlation tests (α = 0.05). Implant stability (p = 0.01) and insertion energy (p < 0.01) differed significantly among groups, while maximum insertion torque did not (p = 0.17). Short implants showed a significant decrease in implant stability (p = 0.01), while reducing implant diameter did not cause any significant effect. Applying the drilling protocol for dense bone resulted in significantly increased insertion energy (p = 0.02) but a significant decrease in implant stability (p = 0.04). Insertion energy was not found to be a more reliable parameter for evaluating primary implant stability when compared to maximum insertion torque and resonance frequency analysis.