Cargando…
Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment
Bacterial infections at the wound site still remain a huge problem for current medicine, as they may lead to development of chronic wounds. In order to prevent such infections, there is a need to use wound dressings that possess ability to inhibit bacterial colonization. In this study, three new cur...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565335/ https://www.ncbi.nlm.nih.gov/pubmed/32842474 http://dx.doi.org/10.3390/polym12091893 |
_version_ | 1783595910414991360 |
---|---|
author | Nurzynska, Aleksandra Klimek, Katarzyna Swierzycka, Iga Palka, Krzysztof Ginalska, Grazyna |
author_facet | Nurzynska, Aleksandra Klimek, Katarzyna Swierzycka, Iga Palka, Krzysztof Ginalska, Grazyna |
author_sort | Nurzynska, Aleksandra |
collection | PubMed |
description | Bacterial infections at the wound site still remain a huge problem for current medicine, as they may lead to development of chronic wounds. In order to prevent such infections, there is a need to use wound dressings that possess ability to inhibit bacterial colonization. In this study, three new curdlan-based biomaterials modified with copper ions were fabricated via simple and inexpensive procedure, and their structural, physicochemical, and biological properties in vitro were evaluated. Received biomaterials possessed porous structure, had ability to absorb high amount of simulated wound fluid, and importantly, they exhibited satisfactory antibacterial properties. Nevertheless, taking into account all evaluated properties of new curdlan-based biomaterials, it seems that Cur_Cu_8% is the most promising biomaterial for management of wounds accompanied with bacterial infections. This biomaterial exhibited the best ability to reduce Escherichia coli and Staphylococcus aureus growth and moreover, it absorbed the highest amount of simulated wound fluid as well as enabled optimal water vapor transmission. Furthermore, Cur_Cu_8% biomaterial possessed the best values of selective indexes, which determine its potential safety in vitro. Thus, Cur_Cu_8% hydrogel may be considered as a promising candidate for management of infected wounds as well as it may constitute a good platform for further modifications. |
format | Online Article Text |
id | pubmed-7565335 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-75653352020-10-27 Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment Nurzynska, Aleksandra Klimek, Katarzyna Swierzycka, Iga Palka, Krzysztof Ginalska, Grazyna Polymers (Basel) Article Bacterial infections at the wound site still remain a huge problem for current medicine, as they may lead to development of chronic wounds. In order to prevent such infections, there is a need to use wound dressings that possess ability to inhibit bacterial colonization. In this study, three new curdlan-based biomaterials modified with copper ions were fabricated via simple and inexpensive procedure, and their structural, physicochemical, and biological properties in vitro were evaluated. Received biomaterials possessed porous structure, had ability to absorb high amount of simulated wound fluid, and importantly, they exhibited satisfactory antibacterial properties. Nevertheless, taking into account all evaluated properties of new curdlan-based biomaterials, it seems that Cur_Cu_8% is the most promising biomaterial for management of wounds accompanied with bacterial infections. This biomaterial exhibited the best ability to reduce Escherichia coli and Staphylococcus aureus growth and moreover, it absorbed the highest amount of simulated wound fluid as well as enabled optimal water vapor transmission. Furthermore, Cur_Cu_8% biomaterial possessed the best values of selective indexes, which determine its potential safety in vitro. Thus, Cur_Cu_8% hydrogel may be considered as a promising candidate for management of infected wounds as well as it may constitute a good platform for further modifications. MDPI 2020-08-23 /pmc/articles/PMC7565335/ /pubmed/32842474 http://dx.doi.org/10.3390/polym12091893 Text en © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nurzynska, Aleksandra Klimek, Katarzyna Swierzycka, Iga Palka, Krzysztof Ginalska, Grazyna Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment |
title | Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment |
title_full | Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment |
title_fullStr | Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment |
title_full_unstemmed | Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment |
title_short | Porous Curdlan-Based Hydrogels Modified with Copper Ions as Potential Dressings for Prevention and Management of Bacterial Wound Infection—An In Vitro Assessment |
title_sort | porous curdlan-based hydrogels modified with copper ions as potential dressings for prevention and management of bacterial wound infection—an in vitro assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565335/ https://www.ncbi.nlm.nih.gov/pubmed/32842474 http://dx.doi.org/10.3390/polym12091893 |
work_keys_str_mv | AT nurzynskaaleksandra porouscurdlanbasedhydrogelsmodifiedwithcopperionsaspotentialdressingsforpreventionandmanagementofbacterialwoundinfectionaninvitroassessment AT klimekkatarzyna porouscurdlanbasedhydrogelsmodifiedwithcopperionsaspotentialdressingsforpreventionandmanagementofbacterialwoundinfectionaninvitroassessment AT swierzyckaiga porouscurdlanbasedhydrogelsmodifiedwithcopperionsaspotentialdressingsforpreventionandmanagementofbacterialwoundinfectionaninvitroassessment AT palkakrzysztof porouscurdlanbasedhydrogelsmodifiedwithcopperionsaspotentialdressingsforpreventionandmanagementofbacterialwoundinfectionaninvitroassessment AT ginalskagrazyna porouscurdlanbasedhydrogelsmodifiedwithcopperionsaspotentialdressingsforpreventionandmanagementofbacterialwoundinfectionaninvitroassessment |