Cargando…
Evaluation of Suppressed Mite Reproduction (SMR) Reveals Potential for Varroa Resistance in European Honey Bees (Apis mellifera L.)
SIMPLE SUMMARY: The mite Varroa destructor represents a great threat to honey bees and the beekeeping industry. The opportunity to select and breed honey bees that are naturally able to fight the mite stands a sustainable solution. This can be achieved by evaluation of the failure of mite reproducti...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565386/ https://www.ncbi.nlm.nih.gov/pubmed/32899430 http://dx.doi.org/10.3390/insects11090595 |
Sumario: | SIMPLE SUMMARY: The mite Varroa destructor represents a great threat to honey bees and the beekeeping industry. The opportunity to select and breed honey bees that are naturally able to fight the mite stands a sustainable solution. This can be achieved by evaluation of the failure of mite reproduction (SMR, suppressed mite reproduction). We conducted a large European experiment to assess the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee populations. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Our results indicate that it is necessary to examine at least 35 brood cells infested by a single mite to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores, indicating that this trait is present within the European honey bee populations. No major differences could be identified between countries for a given population, or between populations in different countries. This study shows the potential to increase selection efforts to breed V. destructor honey bee resistant populations. ABSTRACT: In the fight against the Varroa destructor mite, selective breeding of honey bee (Apis mellifera L.) populations that are resistant to the parasitic mite stands as a sustainable solution. Selection initiatives indicate that using the suppressed mite reproduction (SMR) trait as a selection criterion is a suitable tool to breed such resistant bee populations. We conducted a large European experiment to evaluate the SMR trait in different populations of honey bees spread over 13 different countries, and representing different honey bee genotypes with their local mite parasites. The first goal was to standardize and validate the SMR evaluation method, and then to compare the SMR trait between the different populations. Simulation results indicate that it is necessary to examine at least 35 single-infested cells to reliably estimate the SMR score of any given colony. Several colonies from our dataset display high SMR scores indicating that this trait is present within the European honey bee populations. The trait is highly variable between colonies and some countries, but no major differences could be identified between countries for a given genotype, or between genotypes in different countries. This study shows the potential to increase selective breeding efforts of V. destructor resistant populations. |
---|