Cargando…

Response of Barley Plants to Drought Might Be Associated with the Recruiting of Soil-Borne Endophytes

Mechanisms used by plants to respond to water limitation have been extensively studied. However, even though the inoculation of beneficial microbes has been shown to improve plant performance under drought stress, the inherent role of soil microbes on plant response has been less considered. In the...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Luhua, Schröder, Peter, Vestergaard, Gisle, Schloter, Michael, Radl, Viviane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565417/
https://www.ncbi.nlm.nih.gov/pubmed/32937884
http://dx.doi.org/10.3390/microorganisms8091414
Descripción
Sumario:Mechanisms used by plants to respond to water limitation have been extensively studied. However, even though the inoculation of beneficial microbes has been shown to improve plant performance under drought stress, the inherent role of soil microbes on plant response has been less considered. In the present work, we assessed the importance of the soil microbiome for the growth of barley plants under drought stress. Plant growth was not significantly affected by the disturbance of the soil microbiome under regular watering. However, after drought stress, we observed a significant reduction in plant biomass, particularly of the root system. Plants grown in the soil with disturbed microbiome were significantly more affected by drought and did not recover two weeks after re-watering. These effects were accompanied by changes in the composition of endophytic fungal and bacterial communities. Under natural conditions, soil-derived plant endophytes were major colonizers of plant roots, such as Glycomyces and Fusarium, whereas, for plants grown in the soil with disturbed microbiome seed-born bacterial endophytes, e.g., Pantoea, Erwinia, and unclassified Pseudomonaceae and fungal genera normally associated with pathogenesis, such as Gibberella and Gaeumannomyces were observed. Therefore, the role of the composition of the indigenous soil microbiota should be considered in future approaches to develop management strategies to make plants more resistant towards abiotic stress, such as drought.