Cargando…

MicroRNAs: Diverse Mechanisms of Action and Their Potential Applications as Cancer Epi-Therapeutics

Usually, miRNAs function post-transcriptionally, by base-pairing with the 3′UTR of target mRNAs, repressing protein synthesis in the cytoplasm. Furthermore, other regions including gene promoters, as well as coding and 5′UTR regions of mRNAs are able to interact with miRNAs. In recent years, miRNAs...

Descripción completa

Detalles Bibliográficos
Autor principal: Sadakierska-Chudy, Anna
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565521/
https://www.ncbi.nlm.nih.gov/pubmed/32906681
http://dx.doi.org/10.3390/biom10091285
Descripción
Sumario:Usually, miRNAs function post-transcriptionally, by base-pairing with the 3′UTR of target mRNAs, repressing protein synthesis in the cytoplasm. Furthermore, other regions including gene promoters, as well as coding and 5′UTR regions of mRNAs are able to interact with miRNAs. In recent years, miRNAs have emerged as important regulators of both translational and transcriptional programs. The expression of miRNA genes, similar to protein-coding genes, can be epigenetically regulated, in turn miRNA molecules (named epi-miRs) are able to regulate epigenetic enzymatic machinery. The most recent line of evidence indicates that miRNAs can influence physiological processes, such as embryonic development, cell proliferation, differentiation, and apoptosis as well as pathological processes (e.g., tumorigenesis) through epigenetic mechanisms. Some tumor types show repression of tumor-suppressor epi-miRs resulting in cancer progression and metastasis, hence these molecules have become novel therapeutic targets in the last few years. This review provides information about miRNAs involvement in the various levels of transcription and translation regulation, as well as discusses therapeutic potential of tumor-suppressor epi-miRs used in in vitro and in vivo anti-cancer therapy.