Cargando…
The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction
Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathwa...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565633/ https://www.ncbi.nlm.nih.gov/pubmed/32817219 http://dx.doi.org/10.1128/JVI.01604-20 |
_version_ | 1783595973410291712 |
---|---|
author | Madigan, Victoria J. Berry, Garrett E. Tyson, Tyne O. Nardone-White, Dasean Ark, Jonathan Elmore, Zachary C. Murlidharan, Giridhar Vincent, Heather A. Asokan, Aravind |
author_facet | Madigan, Victoria J. Berry, Garrett E. Tyson, Tyne O. Nardone-White, Dasean Ark, Jonathan Elmore, Zachary C. Murlidharan, Giridhar Vincent, Heather A. Asokan, Aravind |
author_sort | Madigan, Victoria J. |
collection | PubMed |
description | Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro. Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo. Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription. IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency. |
format | Online Article Text |
id | pubmed-7565633 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-75656332020-10-30 The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction Madigan, Victoria J. Berry, Garrett E. Tyson, Tyne O. Nardone-White, Dasean Ark, Jonathan Elmore, Zachary C. Murlidharan, Giridhar Vincent, Heather A. Asokan, Aravind J Virol Virus-Cell Interactions Adeno-associated viruses (AAVs) are dependoparvoviruses that have proven useful for therapeutic gene transfer; however, our understanding of host factors that influence AAV trafficking and transduction is still evolving. Here, we investigated the role of cellular calcium in the AAV infectious pathway. First, we demonstrated a critical role for the host Golgi compartment-resident ATP-powered calcium pump (secretory pathway calcium ATPase 1 [SPCA1]) encoded by the ATP2C1 gene in AAV infection. CRISPR-based knockout (KO) of ATP2C1 decreases transduction by different AAV serotypes. ATP2C1 KO does not appear to inhibit AAV binding, cellular uptake, or nuclear entry; however, capsids within ATP2C1 KO cells demonstrate dispersed and punctate trafficking distinct from the perinuclear, trans-Golgi pattern observed in normal cells. In addition, we observed a defect in the ability of AAV capsids to undergo conformational changes and support efficient vector genome transcription in ATP2C1 KO cells. The calcium chelator BAPTA-AM, which reduces cytosolic calcium, rescues the defective ATP2C1 KO phenotype and AAV transduction in vitro. Conversely, the calcium ionophore ionomycin, which disrupts calcium gradients, blocks AAV transduction. Further, we demonstrated that modulating calcium in the murine brain using BAPTA-AM augments AAV gene expression in vivo. Taking these data together, we postulate that the maintenance of an intracellular calcium gradient by the calcium ATPase and processing within the Golgi compartment are essential for priming the capsid to support efficient AAV genome transcription. IMPORTANCE Adeno-associated viruses (AAVs) have proven to be effective gene transfer vectors. However, our understanding of how the host cell environment influences AAV transduction is still evolving. In the present study, we investigated the role of ATP2C1, which encodes a membrane calcium transport pump, SPCA1, essential for maintaining cellular calcium homeostasis on AAV transduction. Our results indicate that cellular calcium is essential for efficient intracellular trafficking and conformational changes in the AAV capsid that support efficient genome transcription. Further, we show that pharmacological modulation of cellular calcium levels can potentially be applied to improve the AAV gene transfer efficiency. American Society for Microbiology 2020-10-14 /pmc/articles/PMC7565633/ /pubmed/32817219 http://dx.doi.org/10.1128/JVI.01604-20 Text en Copyright © 2020 Madigan et al. https://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Virus-Cell Interactions Madigan, Victoria J. Berry, Garrett E. Tyson, Tyne O. Nardone-White, Dasean Ark, Jonathan Elmore, Zachary C. Murlidharan, Giridhar Vincent, Heather A. Asokan, Aravind The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction |
title | The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction |
title_full | The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction |
title_fullStr | The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction |
title_full_unstemmed | The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction |
title_short | The Golgi Calcium ATPase Pump Plays an Essential Role in Adeno-associated Virus Trafficking and Transduction |
title_sort | golgi calcium atpase pump plays an essential role in adeno-associated virus trafficking and transduction |
topic | Virus-Cell Interactions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7565633/ https://www.ncbi.nlm.nih.gov/pubmed/32817219 http://dx.doi.org/10.1128/JVI.01604-20 |
work_keys_str_mv | AT madiganvictoriaj thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT berrygarrette thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT tysontyneo thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT nardonewhitedasean thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT arkjonathan thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT elmorezacharyc thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT murlidharangiridhar thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT vincentheathera thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT asokanaravind thegolgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT madiganvictoriaj golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT berrygarrette golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT tysontyneo golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT nardonewhitedasean golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT arkjonathan golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT elmorezacharyc golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT murlidharangiridhar golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT vincentheathera golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction AT asokanaravind golgicalciumatpasepumpplaysanessentialroleinadenoassociatedvirustraffickingandtransduction |