Cargando…

β-Secretase1 biological markers for Alzheimer’s disease: state-of-art of validation and qualification

β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer’s disease (AD)...

Descripción completa

Detalles Bibliográficos
Autores principales: Hampel, Harald, Lista, Simone, Vanmechelen, Eugeen, Zetterberg, Henrik, Giorgi, Filippo Sean, Galgani, Alessandro, Blennow, Kaj, Caraci, Filippo, Das, Brati, Yan, Riqiang, Vergallo, Andrea
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566058/
https://www.ncbi.nlm.nih.gov/pubmed/33066807
http://dx.doi.org/10.1186/s13195-020-00686-3
Descripción
Sumario:β-Secretase1 (BACE1) protein concentrations and rates of enzyme activity, analyzed in human bodily fluids, are promising candidate biological markers for guidance in clinical trials investigating BACE1 inhibitors to halt or delay the dysregulation of the amyloid-β pathway in Alzheimer’s disease (AD). A robust body of evidence demonstrates an association between cerebrospinal fluid/blood BACE1 biomarkers and core pathophysiological mechanisms of AD, such as brain protein misfolding and aggregration, neurodegeneration, and synaptic dysfunction. In pharmacological trials, BACE1 candidate biomarkers may be applied to a wide set of contexts of use (CoU), including proof of mechanism, dose-finding, response and toxicity dose estimation. For clinical CoU, BACE1 biomarkers show good performance for prognosis and disease prediction. The roadmap toward validation and qualification of BACE1 biomarkers requires standardized pre-analytical and analytical protocols to reduce inter-site variance that may have contributed to inconsistent results. BACE1 biomarker-drug co-development programs, including biomarker-guided outcomes and endpoints, may support the identification of sub-populations with a higher probability to benefit from BACE1 inhibitors with a reduced risk of adverse effects, in line with the evolving precision medicine paradigm.