Cargando…

Pharmacokinetic and pharmacodynamic integration for optimal dosage of cefquinome against Streptococcus equi subsp. equi in foals

Cefquinome is administered in horses for the treatment of respiratory infection caused by Streptococcus equi subsp. zooepidemicus, and septicemia caused by Escherichia coli. However, there have been no attempts to use cefquinome against Streptococcus equi subsp. equi (S. equi), the causative agent o...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Dong-Ha, Birhanu, Biruk Tesfaye, Lee, Eon-Bee, Lee, Seung-Jin, Boby, Naila, Park, Yong-Soo, Park, Seung-Chun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566116/
https://www.ncbi.nlm.nih.gov/pubmed/33059768
http://dx.doi.org/10.1186/s13567-020-00853-2
Descripción
Sumario:Cefquinome is administered in horses for the treatment of respiratory infection caused by Streptococcus equi subsp. zooepidemicus, and septicemia caused by Escherichia coli. However, there have been no attempts to use cefquinome against Streptococcus equi subsp. equi (S. equi), the causative agent of strangles. Hence the objective of this study was to calculate an optimal dosage of cefquinome against S. equi based on pharmacokinetics and pharmacodynamics integration. Cefquinome (1.0 mg/kg) was administered by intravenous and intramuscular routes to six healthy thoroughbred foals. Serum cefquinome concentrations were determined by high-performance liquid chromatography. The in vitro and ex vivo antibacterial activity were determined from minimum inhibitory concentrations (MIC) and bacterial killing curves. The optimal dosage was calculated from the integration of pharmacokinetic parameters and area under the curve (AUC(24h)/MIC) values. Total body clearance and volume of distribution of cefquinome after intravenous administration were 0.06 L/h/kg and 0.09 L/kg, respectively. Following intramuscular administration, a maximum concentration of 0.73 μg/mL at 1.52 h (T(max)) and a systemic bioavailability of 37.45% were observed. The MIC of cefquinome against S. equi was 0.016 μg/mL. The ex vivo AUC(24h)/MIC values representing bacteriostatic, and bactericidal activity were 113.11, and 143.14 h, respectively. Whereas the %T > MIC for bactericidal activity was 153.34%. In conclusion, based on AUC(24h)/MIC values and pharmacokinetic parameters, cefquinome when administered by intramuscularly at a dosage of 0.53 mg/kg every 24 h, would be effective against infection caused by S. equi in foals. Further studies may be necessary to confirm its therapeutic efficacy in a clinical environment.