Cargando…
Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magn...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566191/ https://www.ncbi.nlm.nih.gov/pubmed/33117690 http://dx.doi.org/10.3389/fonc.2020.558162 |
_version_ | 1783596094197858304 |
---|---|
author | Yan, Jing Liu, Lei Wang, Weiwei Zhao, Yuanshen Li, Kay Ka-Wai Li, Ke Wang, Li Yuan, Binke Geng, Haiyang Zhang, Shenghai Liu, Zhen Duan, Wenchao Zhan, Yunbo Pei, Dongling Zhao, Haibiao Sun, Tao Sun, Chen Wang, Wenqing Hong, Xuanke Wang, Xiangxiang Guo, Yu Li, Wencai Cheng, Jingliang Liu, Xianzhi Ng, Ho-Keung Li, Zhicheng Zhang, Zhenyu |
author_facet | Yan, Jing Liu, Lei Wang, Weiwei Zhao, Yuanshen Li, Kay Ka-Wai Li, Ke Wang, Li Yuan, Binke Geng, Haiyang Zhang, Shenghai Liu, Zhen Duan, Wenchao Zhan, Yunbo Pei, Dongling Zhao, Haibiao Sun, Tao Sun, Chen Wang, Wenqing Hong, Xuanke Wang, Xiangxiang Guo, Yu Li, Wencai Cheng, Jingliang Liu, Xianzhi Ng, Ho-Keung Li, Zhicheng Zhang, Zhenyu |
author_sort | Yan, Jing |
collection | PubMed |
description | The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n = 92) and evaluated on a testing cohort (n = 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB. |
format | Online Article Text |
id | pubmed-7566191 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75661912020-10-27 Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma Yan, Jing Liu, Lei Wang, Weiwei Zhao, Yuanshen Li, Kay Ka-Wai Li, Ke Wang, Li Yuan, Binke Geng, Haiyang Zhang, Shenghai Liu, Zhen Duan, Wenchao Zhan, Yunbo Pei, Dongling Zhao, Haibiao Sun, Tao Sun, Chen Wang, Wenqing Hong, Xuanke Wang, Xiangxiang Guo, Yu Li, Wencai Cheng, Jingliang Liu, Xianzhi Ng, Ho-Keung Li, Zhicheng Zhang, Zhenyu Front Oncol Oncology The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n = 92) and evaluated on a testing cohort (n = 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB. Frontiers Media S.A. 2020-10-02 /pmc/articles/PMC7566191/ /pubmed/33117690 http://dx.doi.org/10.3389/fonc.2020.558162 Text en Copyright © 2020 Yan, Liu, Wang, Zhao, Li, Li, Wang, Yuan, Geng, Zhang, Liu, Duan, Zhan, Pei, Zhao, Sun, Sun, Wang, Hong, Wang, Guo, Li, Cheng, Liu, Ng, Li and Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Yan, Jing Liu, Lei Wang, Weiwei Zhao, Yuanshen Li, Kay Ka-Wai Li, Ke Wang, Li Yuan, Binke Geng, Haiyang Zhang, Shenghai Liu, Zhen Duan, Wenchao Zhan, Yunbo Pei, Dongling Zhao, Haibiao Sun, Tao Sun, Chen Wang, Wenqing Hong, Xuanke Wang, Xiangxiang Guo, Yu Li, Wencai Cheng, Jingliang Liu, Xianzhi Ng, Ho-Keung Li, Zhicheng Zhang, Zhenyu Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma |
title | Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma |
title_full | Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma |
title_fullStr | Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma |
title_full_unstemmed | Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma |
title_short | Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma |
title_sort | radiomic features from multi-parameter mri combined with clinical parameters predict molecular subgroups in patients with medulloblastoma |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566191/ https://www.ncbi.nlm.nih.gov/pubmed/33117690 http://dx.doi.org/10.3389/fonc.2020.558162 |
work_keys_str_mv | AT yanjing radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT liulei radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT wangweiwei radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT zhaoyuanshen radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT likaykawai radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT like radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT wangli radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT yuanbinke radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT genghaiyang radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT zhangshenghai radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT liuzhen radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT duanwenchao radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT zhanyunbo radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT peidongling radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT zhaohaibiao radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT suntao radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT sunchen radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT wangwenqing radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT hongxuanke radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT wangxiangxiang radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT guoyu radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT liwencai radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT chengjingliang radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT liuxianzhi radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT nghokeung radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT lizhicheng radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma AT zhangzhenyu radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma |