Cargando…

Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma

The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magn...

Descripción completa

Detalles Bibliográficos
Autores principales: Yan, Jing, Liu, Lei, Wang, Weiwei, Zhao, Yuanshen, Li, Kay Ka-Wai, Li, Ke, Wang, Li, Yuan, Binke, Geng, Haiyang, Zhang, Shenghai, Liu, Zhen, Duan, Wenchao, Zhan, Yunbo, Pei, Dongling, Zhao, Haibiao, Sun, Tao, Sun, Chen, Wang, Wenqing, Hong, Xuanke, Wang, Xiangxiang, Guo, Yu, Li, Wencai, Cheng, Jingliang, Liu, Xianzhi, Ng, Ho-Keung, Li, Zhicheng, Zhang, Zhenyu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566191/
https://www.ncbi.nlm.nih.gov/pubmed/33117690
http://dx.doi.org/10.3389/fonc.2020.558162
_version_ 1783596094197858304
author Yan, Jing
Liu, Lei
Wang, Weiwei
Zhao, Yuanshen
Li, Kay Ka-Wai
Li, Ke
Wang, Li
Yuan, Binke
Geng, Haiyang
Zhang, Shenghai
Liu, Zhen
Duan, Wenchao
Zhan, Yunbo
Pei, Dongling
Zhao, Haibiao
Sun, Tao
Sun, Chen
Wang, Wenqing
Hong, Xuanke
Wang, Xiangxiang
Guo, Yu
Li, Wencai
Cheng, Jingliang
Liu, Xianzhi
Ng, Ho-Keung
Li, Zhicheng
Zhang, Zhenyu
author_facet Yan, Jing
Liu, Lei
Wang, Weiwei
Zhao, Yuanshen
Li, Kay Ka-Wai
Li, Ke
Wang, Li
Yuan, Binke
Geng, Haiyang
Zhang, Shenghai
Liu, Zhen
Duan, Wenchao
Zhan, Yunbo
Pei, Dongling
Zhao, Haibiao
Sun, Tao
Sun, Chen
Wang, Wenqing
Hong, Xuanke
Wang, Xiangxiang
Guo, Yu
Li, Wencai
Cheng, Jingliang
Liu, Xianzhi
Ng, Ho-Keung
Li, Zhicheng
Zhang, Zhenyu
author_sort Yan, Jing
collection PubMed
description The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n = 92) and evaluated on a testing cohort (n = 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB.
format Online
Article
Text
id pubmed-7566191
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-75661912020-10-27 Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma Yan, Jing Liu, Lei Wang, Weiwei Zhao, Yuanshen Li, Kay Ka-Wai Li, Ke Wang, Li Yuan, Binke Geng, Haiyang Zhang, Shenghai Liu, Zhen Duan, Wenchao Zhan, Yunbo Pei, Dongling Zhao, Haibiao Sun, Tao Sun, Chen Wang, Wenqing Hong, Xuanke Wang, Xiangxiang Guo, Yu Li, Wencai Cheng, Jingliang Liu, Xianzhi Ng, Ho-Keung Li, Zhicheng Zhang, Zhenyu Front Oncol Oncology The 2016 WHO classification of central nervous system tumors has included four molecular subgroups under medulloblastoma (MB) as sonic hedgehog (SHH), wingless (WNT), Grade 3, and Group 4. We aimed to develop machine learning models for predicting MB molecular subgroups based on multi-parameter magnetic resonance imaging (MRI) radiomics, tumor locations, and clinical factors. A total of 122 MB patients were enrolled retrospectively. After selecting robust, non-redundant, and relevant features from 5,529 extracted radiomics features, a random forest model was constructed based on a training cohort (n = 92) and evaluated on a testing cohort (n = 30). By combining radiographic features and clinical parameters, two combined prediction models were also built. The subgroup can be classified using an 11-feature radiomics model with a high area under the curve (AUC) of 0.8264 for WNT and modest AUCs of 0.6683, 0.6004, and 0.6979 for SHH, Group 3, and Group 4 in the testing cohort, respectively. Incorporating location and hydrocephalus into the radiomics model resulted in improved AUCs of 0.8403 and 0.8317 for WNT and SHH, respectively. After adding gender and age, the AUCs for WNT and SHH were further improved to 0.9097 and 0.8654, while the accuracies were 70 and 86.67% for Group 3 and Group 4, respectively. Prediction performance was excellent for WNT and SHH, while that for Group 3 and Group 4 needs further improvements. Machine learning algorithms offer potentials to non-invasively predict the molecular subgroups of MB. Frontiers Media S.A. 2020-10-02 /pmc/articles/PMC7566191/ /pubmed/33117690 http://dx.doi.org/10.3389/fonc.2020.558162 Text en Copyright © 2020 Yan, Liu, Wang, Zhao, Li, Li, Wang, Yuan, Geng, Zhang, Liu, Duan, Zhan, Pei, Zhao, Sun, Sun, Wang, Hong, Wang, Guo, Li, Cheng, Liu, Ng, Li and Zhang. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Oncology
Yan, Jing
Liu, Lei
Wang, Weiwei
Zhao, Yuanshen
Li, Kay Ka-Wai
Li, Ke
Wang, Li
Yuan, Binke
Geng, Haiyang
Zhang, Shenghai
Liu, Zhen
Duan, Wenchao
Zhan, Yunbo
Pei, Dongling
Zhao, Haibiao
Sun, Tao
Sun, Chen
Wang, Wenqing
Hong, Xuanke
Wang, Xiangxiang
Guo, Yu
Li, Wencai
Cheng, Jingliang
Liu, Xianzhi
Ng, Ho-Keung
Li, Zhicheng
Zhang, Zhenyu
Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
title Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
title_full Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
title_fullStr Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
title_full_unstemmed Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
title_short Radiomic Features From Multi-Parameter MRI Combined With Clinical Parameters Predict Molecular Subgroups in Patients With Medulloblastoma
title_sort radiomic features from multi-parameter mri combined with clinical parameters predict molecular subgroups in patients with medulloblastoma
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566191/
https://www.ncbi.nlm.nih.gov/pubmed/33117690
http://dx.doi.org/10.3389/fonc.2020.558162
work_keys_str_mv AT yanjing radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT liulei radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT wangweiwei radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT zhaoyuanshen radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT likaykawai radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT like radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT wangli radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT yuanbinke radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT genghaiyang radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT zhangshenghai radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT liuzhen radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT duanwenchao radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT zhanyunbo radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT peidongling radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT zhaohaibiao radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT suntao radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT sunchen radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT wangwenqing radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT hongxuanke radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT wangxiangxiang radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT guoyu radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT liwencai radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT chengjingliang radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT liuxianzhi radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT nghokeung radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT lizhicheng radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma
AT zhangzhenyu radiomicfeaturesfrommultiparametermricombinedwithclinicalparameterspredictmolecularsubgroupsinpatientswithmedulloblastoma