Cargando…
Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts
OBJECTIVE: The study sought to explore the use of deep learning techniques to measure the semantic relatedness between Unified Medical Language System (UMLS) concepts. MATERIALS AND METHODS: Concept sentence embeddings were generated for UMLS concepts by applying the word embedding models BioWordVec...
Autores principales: | Mao, Yuqing, Fung, Kin Wah |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566472/ https://www.ncbi.nlm.nih.gov/pubmed/33029614 http://dx.doi.org/10.1093/jamia/ocaa136 |
Ejemplares similares
-
Can Unified Medical Language System–based semantic representation improve automated identification of patient safety incident reports by type and severity?
por: Wang, Ying, et al.
Publicado: (2020) -
Exploiting hierarchy in medical concept embedding*
por: Finch, Anthony, et al.
Publicado: (2021) -
PhenClust, a standalone tool for identifying trends within sets of biological phenotypes using semantic similarity and the Unified Medical Language System metathesaurus
por: Wilson, Jennifer L, et al.
Publicado: (2021) -
EHR phenotyping via jointly embedding medical concepts and words into a unified vector space
por: Bai, Tian, et al.
Publicado: (2018) -
Semantic reclassification of the UMLS concepts
por: Fan, Jung-Wei, et al.
Publicado: (2008)