Cargando…
Extraordinary optical transmission through periodic Drude-like graphene sheets using FDTD algorithms and its unconditionally stable approximate Crank–Nicolson implementation
Based upon the approximate Crank–Nicolson (CN) finite-difference time-domain method implementation, the unconditionally stable algorithm is proposed to investigate the wave propagation and transmission through extremely thin graphene layers. More precisely, by incorporating the CN Douglas–Gunn algor...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7566490/ https://www.ncbi.nlm.nih.gov/pubmed/33060774 http://dx.doi.org/10.1038/s41598-020-74552-5 |
Sumario: | Based upon the approximate Crank–Nicolson (CN) finite-difference time-domain method implementation, the unconditionally stable algorithm is proposed to investigate the wave propagation and transmission through extremely thin graphene layers. More precisely, by incorporating the CN Douglas–Gunn algorithm, the piecewise linear recursive convolution method and the auxiliary differential equation method, the analytical model is proposed for Drude-like graphene model. To obtain the solution of the governing equations, the perfectly matched layer and the periodic boundary condition are applied to the graphene structure with two dimensional nano-materials. Numerical examples are carried out for further investigation. During the simulation, the influences of the parameters such as the grating slit and its thickness on the wave transmission are investigated and discussed. The result shows that not only the graphene grating has high transmission performance but also the proposed methods have considerable performance and accuracy. |
---|